
KATHOLIEKE UNIVERSITEIT LEUVEN

FACULTEIT ECONOMISCHE EN
TOEGEPASTE ECONOMISCHE WETENSCHAPPEN
DEPARTEMENT TOEGEPASTE ECONOMISCHE WETENSCHAPPEN

DEVELOPING INTELLIGENT SYSTEMS FOR

CREDIT SCORING

USING MACHINE LEARNING TECHNIQUES

Proefschrift voorgedragen tot
het behalen van de graad
van Doctor in de Toegepaste
Economische Wetenschappen
door
Bart BAESENS

Nummer 180 2003

Committee

Promotor Prof. dr. Jan Vanthienen K.U.Leuven
Prof. dr. Jacques Vandenbulcke K.U.Leuven
Prof. dr. Maurice Verhelst K.U.Leuven
Prof. dr. Martina Vandebroek K.U.Leuven
Prof. Jonathan Crook University of Edinburgh
Prof. Lyn Thomas University of Southampton

Daar de proefschriften in de reeks van de Faculteit Economische en Toegepaste
Economische Wetenschappen het persoonlijk werk zijn van hun auteurs, zijn alleen
deze laatsten daarvoor verantwoordelijk.

Acknowledgments

During my period as a researcher, I have had the pleasure of collaborating with
many interesting and fine people whose contribution and support improved the
quality of my research. Therefore, I would like to start by expressing my gratitude
and acknowledgements.

First of all, I would like to thank my promotor, prof. dr. Jan Vanthienen, for
the very pleasant collaboration and for the freedom he granted me to pursue my
research goals. During my career as a PhD research assistant, he was always pre-
pared to give me advice and support (even when his schedule was very busy), and
the many discussions we had were both very interesting and stimulating. Professor
Vanthienen taught me that data mining is not only about complex algorithms and
numbers but should always be approached with a sound sense of criticism. This
is a principle which, in my opinion, is far too often neglected in today’s academic
as well as business practice. I also would like to thank the other members of my
PhD committee for carefully reading my text and providing me with their com-
ments. I am grateful to prof. dr. Jacques Vandenbulcke for triggering my interest
in the field of management information systems and for the many opportunities
and challenges he gave me. I thank prof. dr. Maurice Verhelst for the very nice
collaboration and for giving me the opportunity to teach the exercises in statistics
which certainly helped to improve my presentation skills. I am indebted to prof.
dr. Martina Vandebroek for teaching me the basic concepts of multivariate statis-
tics and classification which further aroused my interest in data analysis and data
mining. My two external committee members, professor Jonathan Crook from
the University of Edinburgh and professor Lyn Thomas from the University of
Southampton, also deserve a special acknowledgment for their constructive com-
ments and for allowing me to participate in the Credit Scoring and Credit Control
conference.

I would also like to acknowledge the other professors - prof. dr. Guido Dedene,
prof. dr. Ferdi Put, prof. dr. Monique Snoeck, prof. dr. Wilfried Lemahieu -
and colleagues - Stijn Viaene, Jurgen Martens, Frank Goethals, Cindy Michiels,
Herlinde Leemans, Dirk Vanderbist, Hilde Plessers and Stephan Poelmans - of
the Management Informatics research group for the nice working atmosphere. I

i

ii Acknowledgments

want to deeply thank my office colleague and friend dr. Christophe (he doesn’t
like to be referred to as dr. Mues) for helping me to overcome the many acute
outbursts of doctoratitis that tortured me during my period as a PhD researcher.
Also, the expertise he passed on to me with respect to the basic principles of office
soccer and thesis throwing, and the insights gained from the many fruitful political
discussions (often ideally timed), are assets that I will cherish during the rest of
my career. Manu De Backer insisted on thanking him for his invaluable advice
on figure formatting, the many gastronomic evenings we shared accompanied by
french fries, hamburgers, beer and Champions League football, and for allowing
me to calm my anger and rage during the many exciting and heroic games of
ping-pong we played (and which I dominantly won!).

I have had the pleasure of working with very interesting people both in a na-
tional and international context. I would like to thank dr. ir. Tony Van Gestel
from Dexia Group for the joint work we did on using least squares support vec-
tor machines for practical application purposes. The numerous time we spent on
debugging and running Matlab programs and the many discussions we had on
maximizing our financial asset returns (or how to reduce our losses) were both
interesting and (sometimes even) profitable. I am also grateful to his colleagues,
prof. dr. ir. Johan Suykens, prof. dr. ir. Bart De Moor and prof. dr. ir.
Joos Vandewalle for their support and feedback. I would also like to thank prof.
dr. Rudy Setiono from the University of Singapore for the joint work we did on
neural network rule extraction. I acknowledge prof. dr. Frank Hoffmann from
the University of Dortmund for our collaboration on genetic fuzzy rule extraction.
Although all my conversations with Rudy and Frank thus far took place electron-
ically, I do hope to meet them in person one day. I am indebted to prof. dr.
Dirk Van den Poel and prof. dr. Patrick Van Kenhove from the University of
Ghent for our joint work on using machine learning techniques and data mining
in a marketing context. Also Geert Verstraeten and Wouter Buckinx are acknowl-
edged for the fruitful collaboration. I am grateful to dr. Michael Egmont-Petersen
from the University of Utrecht for the joint work we did on Bayesian probabilistic
networks. I would like to thank An Carbonez and Martine Beullens from the Uni-
versity Centre of Statistics for allowing me to assist in organising the data mining
courses and for the software support. A special word of thanks goes to Annelies
Bulkens and all other people from SAS Belgium for the pleasant collaboration, the
software support, and for allowing me to participate in all kinds of very interesting
(and well-organised!) SAS events. A further word of thanks goes to the following
people who kindly provided me with data allowing me to conduct my research:
Joseph Vingerhoets (Axa Bank), Rudi Stommels (Dexia Bank), dr. Joao Garcia
(Dexia Group), Peter Van Dijcke (Dexia Group) and dr. Maria Stepanova (UBS
Bank, Switzerland). I am also grateful to the master thesis students that assisted
me in my research and to the editors of all journals for which I was asked to review
the work of colleagues in the field. Chris Massie and the other members of the
secretariat are acknowledged for guiding me through the administrative steps of
the process.

iii

Finally, I would like to thank my parents, brother and sister, parents-in-law,
other family members, and friends for their support. Especially my wonderful wife,
Katrien Denys, deserves a word of thanks for her continuous love and care. Her
friendship and humor helped me to reset (or should I say set?) my brain when I
needed it. I hope I can be as good a husband to you as you are a wife and partner
to me!

iv Acknowledgments

Contents

1 Introduction 1

1.1 The Knowledge Discovery in Data Process 2

1.2 The Credit Scoring Classification Problem 4

1.3 Contributions . 5

1.3.1 Benchmarking state of the art classification algorithms . . . 5

1.3.2 Investigating the impact of various cut-off setting sche- mes
on scorecards . 5

1.3.3 Developing intelligent systems for credit scoring using neural
network rule extraction and decision tables 6

1.3.4 Developing intelligent systems for credit scoring using fuzzy
rule extraction . 6

1.3.5 Using a neural network based approach for predicting cus-
tomer default times . 6

1.4 Notation . 7

2 An Overview of Classification Techniques and Issues 9

2.1 Classification Techniques . 10

2.1.1 Logistic Regression . 10

2.1.2 Discriminant Analysis . 11

2.1.3 Linear Programming . 14

2.1.4 Bayesian Networks for Classification 14

v

vi Contents

2.1.5 The naive Bayes classifier 17

2.1.6 Tree augmented naive Bayes classifiers 18

2.1.7 Decision Trees and Rules 19

2.1.8 K-Nearest Neighbour Classifiers 22

2.1.9 Neural Networks . 22

2.1.10 Support Vector Machine Classifiers 27

2.1.11 Least Squares Support Vector Machine Classifiers 29

2.2 Data Set Split Up . 30

2.3 Input Selection . 32

2.4 Example Benchmarking Study 1 34

2.4.1 Description of the Data Sets 34

2.4.2 Hyperparameter Selection for the SVM Classifiers 35

2.4.3 Experimental Setup . 36

2.4.4 Results . 38

2.5 Benchmarking Study 2 . 40

2.6 Conclusions and Limitations of Benchmarking Studies 1 and 2 . . 43

2.7 The Area Under the Receiver Operating Characteristic Curve . . . 45

2.8 Computing the AUC . 47

2.9 Test Statistics to Compare the PCC and AUC 48

2.10 Conclusions . 50

3 Building Scorecards for Credit Scoring 53

3.1 Problem Statement . 54

3.2 Reject Inference . 56

3.3 Using Machine Learning Techniques for Credit Scoring 58

3.4 Building Scorecards for Credit Scoring 61

3.4.1 Data Sets and Experimental Setup 61

Contents vii

3.4.2 Setting the cut-off . 62

3.4.3 Results . 64

3.4.4 Discussion . 66

3.5 Conclusions . 73

4 Neural Network Rule Extraction for Credit Scoring 75

4.1 An Overview of Neural Network Rule Extraction 76

4.2 Neural Network Rule Extraction using Neurolinear and Neurorule 80

4.3 Neural Network Tree Extraction using Trepan 86

4.4 Neural Network Rule Extraction for Credit Scoring 88

4.4.1 Experimental Setup . 88

4.4.2 Results for the Continuous Data Sets 89

4.4.3 Results for the Discretized Data Sets 92

4.5 Visualizing the Extracted Rule Sets using Decision Tables 98

4.6 Conclusions . 106

5 Fuzzy Rule Extraction for Credit Scoring 109

5.1 Fuzzy Classification Rules . 110

5.2 Using Fuzzy Rules for Credit Scoring 111

5.3 Evolutionary Algorithms for Inferring Fuzzy Rules 113

5.3.1 Evolutionary Algorithms . 113

5.3.2 Boosted Genetic Fuzzy Classification 114

5.3.3 Genetic Representation for Approximate and Descriptive Fuzzy
Rules . 115

5.3.4 Fitness Function . 116

5.3.5 The Boosting Algorithm . 118

5.3.6 Fuzzy Classifier Aggregation 119

5.4 Neural Network Fuzzy Rule Extraction using Nefclass 120

viii Contents

5.5 Empirical Evaluation . 123

5.5.1 Data sets and Experimental Setup 123

5.5.2 Results . 124

5.6 Conclusions . 130

6 Survival Analysis for Credit Scoring 131

6.1 Basic Survival Analysis Concepts 132

6.2 Statistical Methods for Survival Analysis 134

6.2.1 Kaplan Meier Analysis . 134

6.2.2 Parametric Survival Analysis Models 134

6.2.3 Proportional Hazards Models 136

6.2.4 Discrete Proportional Hazards Models 139

6.3 Neural Networks for Survival Analysis 140

6.3.1 Direct Classification . 141

6.3.2 Ohno-Machado . 141

6.3.3 Ravdin and Clark . 142

6.3.4 Biganzoli et al. 143

6.3.5 Lapuerta et al. 143

6.3.6 Faraggi . 144

6.3.7 Street . 144

6.3.8 Mani . 145

6.3.9 Brown et al. 146

6.3.10 Discussion . 146

6.4 Survival Analysis for Credit Scoring 146

6.5 Empirical Evaluation . 149

6.5.1 Experimental Setup and Data Set Characteristics 149

6.5.2 Results for Predicting Early Repayment 153

Contents ix

6.5.3 Results for Predicting Default 155

6.6 Conclusions . 162

7 Conclusions 163

7.1 Thesis Summary and Principal Conclusions 163

7.2 Issues for Further Research . 166

7.2.1 The Knowledge Fusion problem 166

7.2.2 Extensions to Indirect Credit Scoring 167

7.2.3 Behavioral Credit Scoring 168

7.2.4 Extensions to other Contexts and Problem Domains 168

A Tables Accompanying Benchmarking Study 1 of Chapter 2 169

B Multiclass Benchmarking Study 171

C Attributes for German credit 175

D Attributes for Bene1 179

x Contents

Samenvatting

Het ontwikkelen van

intelligente systemen voor

krediettoekenning met

behulp van machine learning

technieken

Financiële instellingen hebben gedurende de laatste decennia massa’s gegevens
verzameld aangaande het terugbetalingsgedrag van hun klanten1,2. Samen met
de toename in rekencapaciteit, geboekt op het vlak van hardware, en de opkomst
van geavanceerde algoritmen creëert dit een nieuwe uitdaging: hoe kunnen we uit
deze verzamelde gegevens nuttige beslissingsmodellen extraheren en deze succesvol
aanwenden als hulpinstrument bij de kredietbeslissing voor toekomstige klanten.

De extractie van kennis en beslissingsmodellen uit data, en het daarmee geas-
socieerde traject, wordt doorgaans onder de noemer Knowledge Discovery in Data
(KDD) gevat. Machine learning is een essentieel onderdeel van KDD en voorziet
in een ganse waaier van leeralgoritmen gericht op het extraheren van kennis en
patronen uit data. In dit doctoraat gaan wij dieper in op het gebruik van machine
learning technieken bij de ontwikkeling van beslissingsondersteunende systemen
voor kredietverlening. Hierbij zullen zowel de accuraatheid als de begrijpbaarheid
van de geëxtraheerde modellen een cruciale rol spelen.

1B. Baesens, C. Mues, J. Vanthienen, Knowledge Discovery in Data: van academische denkoe-
fening naar bedrijfsrelevante praktijk, Informatie, pp. 30-35, Februari, 2003.

2B. Baesens, C. Mues, J. Vanthienen, Knowledge Discovery in Data: naar performante én
begrijpelijke modellen van bedrijfsintelligentie, Business IN-zicht, Nummer 12, Maart 2003.

xi

xii Samenvatting

Business Intelligence en Knowledge Discovery in

Data

Business Intelligence omsluit een brede categorie van ICT-applicaties en -techno-
logieën voor het verzamelen, analyseren en verspreiden van bedrijfsinformatie, die
de bedoeling hebben om de bedrijfsvoering te ondersteunen of te optimaliseren.
Daarbij duiken doorgaans begrippen op als data warehousing, data mining en
knowledge management. Met name het distilleren van bruikbare patronen uit
de almaar groeiende stroom van ruwe data vormt een sleuteluitdaging binnen dit
geheel. De geautomatiseerde ontginning van kennis, en het daarmee geassocieerde
traject, wordt doorgaans onder de noemer Knowledge Discovery in Data (KDD)
gevat. Het is een iteratief proces dat ruwweg uitgesplitst kan worden in drie fasen:

1. sampling en data preprocessing;

2. data mining;

3. de ontwikkeling van beslissingsondersteunende systemen.

In de sampling en data preprocessing fase worden de relevante gegevensbronnen
gëıdentificeerd, de data geselecteerd en vervolgens opgeschoond. Vertrekkende van
de aldus bekomen dataset wordt, in de daaropvolgende data mining fase, kennis
geëxtraheerd door de uitvoering van een machine learning algoritme; het resultaat
hiervan kan bijvoorbeeld de vorm aannemen van een neuraal netwerk, beslissings-
boom, of een set van associatieregels. In de laatste fase wordt de geëxtraheerde
kennis dan gëıntegreerd in het betreffende bedrijfsproces via de ontwikkeling van
een beslissingsondersteunend systeem.

In een kredietverleningscontext kan KDD toegepast worden voor de ontwikke-
ling van modellen die de kredietwaardigheid van toekomstige klanten voorspellen.
Gebaseerd op de kenmerken en het terugbetalingsgedrag van klanten uit het verleden
tracht men hierbij modellen te schatten die de kans op succesvolle terugbetaling
van nieuwe potentiële klanten zo nauwkeurig mogelijk berekenen (ook wel credit
scoring genoemd). Op basis hiervan kan dan een beslissing genomen worden om de
kredietaanvraag te aanvaarden dan wel te verwerpen. Het spreekt vanzelf dat we
hier met een klassiek binair classificatieprobleem te maken hebben: is de klant een
wanbetaler of niet, gegeven zijn inkomen, spaarmiddelen, huwelijksstatus, etc.?
Het gebruik van KDD voor het ontwikkelen van intelligente systemen voor kredi-
etverlening vormt één van de kernonderzoeksvragen van dit doctoraat. Andere
interessante toepassingen van KDD bestaan in bijna alle functionele domeinen
waar voldoende data voorhanden zijn. Enkele frequente voorbeelden vinden we in
marketing - we denken hierbij aan market basket analyse, waar het de bedoeling
is patronen in het aankoopgedrag van klanten op te sporen, of bijvoorbeeld het
voorspellen van klantverloop (churn prediction) -, in financiewezen (bijvoorbeeld
stock picking), fraudedetectie, en zo meer.

xiii

In wat volgt worden de verschillende stappen van het KDD proces nader
toegelicht en worden de bijdragen en onderzoeksvragen van dit doctoraat gesitueerd.

Sampling en Data preprocessing voor Credit Scor-

ing

Hoewel het belang van een goed uitgevoerde preprocessing in de KDD literatuur
al vaker is benadrukt, willen wij er nogmaals de aandacht op vestigen. Deze fase is
immers cruciaal voor het succes van de volgende stappen in het KDD-proces.
Onze ervaring heeft meermalen uitgewezen dat zich bij de uitvoering van een
KDD-project al snel praktische vragen opdringen over sampling en preprocessing
die vaak op een ad-hoc manier beantwoord (moeten) worden. In een kredietver-
leningscontext bijvoorbeeld blijkt de precieze definiëring van de klantenpopulatie
allerminst een triviale opdracht. Immers, in het verleden voerden banken ook
al een kredietverleningspolitiek, waardoor de klantenpopulatie eigenlijk uit twee
subpopulaties bestaat: die aanvragers aan wie krediet werd toegekend en diege-
nen aan wie krediet geweigerd werd. Voor de eerste subpopulatie is bekend welke
klanten uiteindelijk wanbetalers bleken en welke niet. Voor de tweede subpopulatie
is dit echter niet bekend (zie Figuur I). Dat brengt uiteraard met zich mee dat
de tweede subpopulatie bij gebrek aan waarde voor de afhankelijke variabele niet
gebruikt kan worden bij het schatten van klantscoremodellen. Dit fenomeen, en

PSfrag replacements

populatie

a % aanvaard

b % geweigerd

x % goed

y % slecht

? % goed

? % slecht

Figuur I: Het reject inference probleem.

het mogelijk vertekenend effect ervan op de resultaten, wordt in de credit scoring
literatuur vaak omschreven als het reject inference probleem en is tot op heden
vanuit academische hoek nog niet op een sluitende manier beantwoord. Vaak wor-
den hier dan ook heuristische oplossingsmethoden voorgesteld en hanteert men het
principe dat je moet roeien met de riemen die je hebt.

Een ander voorbeeld betreft market-basket analyse, waarbij men aan de hand
van associatieregels patronen probeert te identificeren in de aankooptransacties van
klanten. Ook hier dient grondig nagedacht te worden over hoe de aankooptransac-
ties gesampled moeten worden vooraleer het data mining algoritme uitgevoerd kan
worden. Een belangrijk aandachtspunt hierbij betreft de timing van de transacties:

xiv Samenvatting

associaties tussen bijvoorbeeld skibroeken en -brillen zijn doorgaans prominenter
aanwezig tijdens de wintermaanden dan gedurende de rest van het jaar.

Ook de uitvoering van andere preprocessing taken, zoals bijvoorbeeld het op-
schonen van de data, de identificatie van extreme observaties (wat is een extreme
observatie?), de adequate definitie van de doelvariabele (wat is een wanbetaler?)
en de keuze van de juiste onafhankelijke variabelen roepen heel wat praktische over-
wegingen op en houden vaak trade-offs in waarmee niet onberedeneerd mag worden
omgegaan. Samengevat is de sampling en preprocessing fase een cruciale stap bin-
nen het KDD proces. In deze stap worden immers keuzes gemaakt die zowel vanuit
academisch als bedrijfsperspectief te verantwoorden moeten zijn. Maar al te vaak
vergeet men dat de kennis die ontgonnen wordt gedurende het verdere verloop van
het KDD-proces altijd gëınterpreteerd en teruggekoppeld moet worden in functie
van de keuzes die in de preprocessing stappen zijn gemaakt.

Machine learning technieken voor credit scoring

Zodra de data is gepreprocessed, kan de data mining fase worden aangevat. Naarge-
lang de problematiek kan hierbij een onderscheid gemaakt worden tussen twee vor-
men van data mining: voorspellende en beschrijvende (zie Tabel I). Een prangend

Data mining Taak Karakteristiek Voorbeeld

voorspellende regressie voorspellen van een continue voorspellen van beurskoersen,
data mining afhankelijke variabele productverkoop

classificatie voorspellen van een discrete voorspellen kredietwaardig-
afhankelijke variabele heid, fraude, bankroet

beschrijvende clustering identificeren van homogene identificeren van marktsegmenten
data mining subpopulaties

associatieregels zoeken van verbanden identificeren van producten die
tussen items samen worden aangekocht

(market basket analysis)
sequentieregels zoeken van verbanden identificeren van tijdsvolgorde

tussen items in de tijd van aankoop producten
afhankelijkheidsanalyse identificeren van afhankelijk- identificeren van afhankelijk-

heden tussen variabelen heden tussen biomedische
metingen

Tabel I: Voorspellende versus beschrijvende data mining.

probleem dat zich hier stelt is de keuze van een geschikt algoritme. Alleen al voor
classificatietoepassingen zoals krediettoekenning wordt het KDD-project team on-
vermijdelijk geconfronteerd met een brede waaier aan algoritmen: statistische clas-
sificatiemethoden, lineaire programmering, neurale netwerken, beslissingsbomen,
k-nearest neighbour, Bayesiaanse netwerken, genetische algoritmen, en ga zo maar
verder [13, 242]. Een recent ontwikkelde methode van classificatie is zelfs gebaseerd
op het modelleren van het gedrag van mierenkolonies. Heel wat KDD-tools (SAS
Enterprise Miner, SPSS Clementine en IBM Intelligent Miner for Data) bieden on-

xv

dersteuning voor deze methoden. Bij de keuze van een geschikt algoritme moeten
echter meerdere karakteristieken in ogenschouw genomen worden.

Hoewel nauwkeurigheid een intüıtief prestatiecriterium lijkt, moet gezegd wor-
den dat een ondubbelzinnige kwantificering ervan niet altijd voor de hand ligt.
Denk bijvoorbeeld aan de kredietcontext. Als eerste näıeve benadering kan men
streven naar het maximaliseren van het aantal correct geclassificeerde klanten op
een onafhankelijke testset. Men kiest hierbij vooraf een cut-off (standaard 0.5), zet
de posterior kansen P(klant=goede terugbetaler | inkomen, spaarmiddelen, huwe-
lijksstatus, ...) die de classificatie-techniek oplevert om naar klasse-labels (goede of
slechte terugbetaler), en vervolgens berekent men dan de procentuele accuraatheid
op de testset. Hoewel dit geen slecht criterium is, vertoont het toch een aantal
tekortkomingen. Slechts een klein aantal klanten zal wanbetaler zijn, wat ervoor
zorgt dat een weinig informatieve regel zoals ’elke klant is een goede klant’ reeds
een heel goede prestatie oplevert. Men moet, met andere woorden, dus ook andere
aspecten beschouwen, zoals de misclassificatiekosten van vals negatieven versus
die van vals positieven. Deze zijn echter moeilijk te kwantificeren, aangezien de
kosten typisch zullen variëren van klant tot klant (afhankelijk van het bedrag van
de lening, interestvoet, en dergelijke) en bovendien ook nog eens over de tijd. Vaak
worden dan ook heuristische methoden aangewend om de misclassificatiekosten te
benaderen. Deze kunnen dan gebruikt worden om de cut-off te bepalen die toe-
laat de posterior kansen P(klant=goede terugbetaler | inkomen, spaarmiddelen,
huwelijksstatus, ...) om te zetten naar klasse-labels.

In een eerste deel van dit doctoraat wordt dan ook uitvoerig aandacht besteed
aan de grondige studie van een aantal recent voorgestelde classificatie-technieken.
Hun prestatie wordt vergeleken met de klassieke technieken op een aantal real-life
krediet data sets op basis van meerdere prestastiemaatstaven. Zo zullen onder
meer verschillende cut-off schema’s in ogenschouw genomen worden.

William van Ockham, een bekende 14de-eeuwse filosoof, benadrukte dat mod-
ellen behalve accuraat ook begrijpelijk en simpel moeten zijn. Een eenvoudig
model zal immers sneller en beter in de bedrijfscontext gëıntegreerd kunnen worden
dan een complex, sterk geparametriseerd black-box model. Deze keuze impliceert
doorgaans een trade-off omdat complexe modellen vaak ook beter presteren inzake
nauwkeurigheid. Neem bijvoorbeeld neurale netwerken. Doordat deze laatste uni-
versele approximatoren zijn, leidt hun toepassing vaak tot zeer goed presterende
modellen [11, 13]. Echter, een belangrijk nadeel voor de bedrijfsbesluitvorming
is hun beperkte verklarende kracht: hoewel zij het mogelijk maken erg accurate
uitspraken of predicties te doen, is het pijnpunt vaak dat de precieze wijze waarop
zij dergelijke beslissingen afleiden niet pasklaar beschikbaar of eenvoudig interpre-
teerbaar is. Figuur II toont een voorbeeld van een neuraal netwerk dat getraind
werd voor het schatten van de kredietwaardigheid van klanten van een financiële
instelling in de Benelux: krachtig maar moeilijk interpreteerbaar. In het tweede
deel van dit doctoraat wordt onder meer onderzocht hoe de neurale netwerk black-
box geopend kan worden met behulp van regelextractiemethoden. Zonder een

xvi Samenvatting

PSfrag replacements

Looptijd > 12 maanden

Doel= cash provisie

Doel= tweedehands wagen

Spaarmiddelen > 12.40 Euro

Inkomen > 719 Euro

Eigendom Onroerend Goed=Neen

Aantal jaren klant > 3

Economische sector=sector C

0.611

0.380

Klant=goed

Klant=slecht

-0.202

-0.287

-0.102

0.278

-0.081

-0.162

0.137

-0.289

0.457

-0.453

Figuur II: Neuraal netwerk voor het voorspellen van kredietwaardigheid.

transparanter voorstellingswijze is de kans immers groot dat de organisatie zelf
onvoldoende vertrouwen heeft in de correcte werking van het model. Bovendien
bestaat er in sommige landen een wettelijke verplichting inzake de openbaarheid
van het gehanteerde model. Figuur III bevat de ’als-dan’-regels die uit het netwerk
van Figuur II werden geëxtraheerd. Deze regels zijn eenvoudig te interpreteren en
bovendien krachtig: zij blijken namelijk even accuraat als het netwerk uit Figuur
II.

Naast de studie van crisp regels, zoals weergegeven in Figuur III, wordt ook
het gebruik van vage (fuzzy) regels onderzocht. Figuur IV toont een voorbeeld van
een verzameling vage regels voor krediettoekenning. Vage regels zijn gebruiksvrien-
delijker en intüıtiever dan crisp regels en kunnen dan ook interessant zijn in een
kredietverleningscontext. In dit doctoraat wordt onderzocht hoe evolutionaire al-
goritmen en neurofuzzy systemen kunnen gebruikt worden voor het extraheren
van vage regels.

Credit scoring spitst zich voornamelijk toe op het onderscheiden van goede en
slechte klanten op basis van hun karakteristieken. Echter, het verschaffen van in-
formatie betreffende het tijdstip waarop klanten wanbetaler worden kan ook heel
interessant zijn voor een financiële instelling. Dit opent immers perspectieven op
allerlei andere interessante toepassingen zoals het berekenen van de winst die een
klant oplevert gedurende zijn lening (profit scoring). In dit doctoraat wordt deze
problematiek, vaak omschreven als survival analyse, ook nader onderzocht. Hier-
bij worden zowel klassieke statistische methoden als neurale netwerk technieken
bestudeerd.

xvii

Als Looptijd > 12 maanden En Doel = cash provisie En
Spaarmiddelen ≤ 12.40 Euro En Aantal jaren klant ≤ 3 Dan Klant = slecht

Als Looptijd > 12 maanden En Doel = cash provisie En Eigendom
onroerend goed = Nee En Spaarmiddelen ≤ 12.40 Euro Dan Klant = slecht

Als Doel = cash provisie En Inkomen > 719 Euro En Eigendom
onroerend goed = Nee En Spaarmiddelen ≤ 12.40 Euro En Aantal jaren klant ≤ 3
Dan Klant = slecht

Als Doel = tweedehands wagen En Inkomen > 719 Euro En Eigendom
onroerend goed = Nee En Spaarmiddelen ≤ 12.40 Euro En Aantal jaren klant ≤ 3
Dan Klant = slecht

Als Spaarmiddelen ≤ 12.40 Euro En Economische sector = Sector C
Dan Klant = slecht

Default klasse: Klant = goed

Figuur III: Als-dan’-regels geëxtraheerd uit het neuraal netwerk van Figuur II.

Als Lastenpercentage hoog is En Aantal jaren spaarder is klein
Dan Klant=slechte terugbetaler

Als Lastenpercentage klein is
Dan Klant=goede terugbetaler

Als Lastenpercentage medium is En Aantal jaren spaarder is klein
Dan Klant=slechte terugbetaler

Figuur IV: Het gebruik van vage regels voor krediettoekening.

Het ontwikkelen van intelligente beslissingsonder-

steunende systemen voor krediettoekenning

Wanneer de kennis ontgonnen is, kan de laatste stap van het KDD-proces aangevat
worden. Hierbij is het de bedoeling om volledig uitrolbare beslissingsonderste-
unende systemen te bouwen om zo het betreffende bedrijfsproces (deels) te au-
tomatiseren. Het is hierbij belangrijk op te merken dat de visualisatie van de
ontgonnen kennis heel belangrijk is om deze op een zinvolle manier te kunnen
interpreteren. Verscheidene visualisatiemechanismen werden in de literatuur al
voorgesteld. Hoewel OLAP (On-Line Analytical Processing) vaak in de prepro-
cessingfase aangewend wordt, kan het ook een belangrijke rol spelen in de post-
processingfase bij de visuele weergave van, bijvoorbeeld, associatieregels [82]. In
dit doctoraat wordt het gebruik van beslissingstabellen voorgesteld om de regels

xviii Samenvatting

op een gebruiksvriendelijke manier te visualiseren [165]. Zo geeft Figuur V de
beslissingstabel weer voor de regels van Figuur III. De tabel wordt typisch op een
top-down manier doorlopen bij de evaluatie van nieuwe prospecten. De tabel is
opgesteld met behulp van de Prologa software, die onder meer ook faciliteiten
voorziet voor consultatie en verificatie van de geëxtraheerde regels.

1. Spaarmiddelen (Euro) £ 12.40 > 12.40

2. Economische sector Sector C andere -

3. Doel - cash provisie tweedehandswagen ander -

4. Looptijd - £ 12 maanden > 12 maanden - - -

5. Aantal jaren klant - £ 3 > 3 £ 3 > 3 £ 3 > 3 - -

6. Eigendom onroerend goed - ja nee - - ja nee ja nee - - -

7. Inkomen (Euro) - - £ 719 > 719 - - - - - £ 719 > 719 - - -

1. Klant = goed - x x - x - x - x x - x x x

2. Klant = slecht x - - x - x - x - - x - - -

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figuur V: Beslissingstabel voor de regels van Figuur III.

Een ander cruciaal aandachtspunt tijdens de laatste fase van het KDD-proces
betreft de integratie van de nieuw ontgonnen kennis met de bestaande kennis.
Immers, de expert - diegene die momenteel verantwoordelijk is voor de beslissin-
gen van het bedrijfsproces - heeft ook heel wat ervaring en kennis die soms niet
door het data mining algoritme gemodelleerd kunnen worden. Het is dan ook
belangrijk om beide vormen van kennis, de kennis die uit data is ontgonnen en
de aanwezige impliciete kennis, samen te integreren binnen één coherent en on-
derhoudbaar beslissingsondersteunend systeem (zie Figuur VI). Dit proces wordt
in de literatuur vaak omschreven als knowledge fusion en vormt een uitdagend
kennismanagementvraagstuk waarnaar nog heel wat praktijkgedreven onderzoek
nodig is.

xix

PSfrag replacements

domein expert domein expert domein expert

krediet

database

knowledge knowledgeknowledge machine

acquisition acquisitionacquisition learning

knowledge fusion

geconsolideerde credit

scoring kennis

Figuur VI: Het knowledge fusion proces.

Besluit

Bij het gebruik van KDD voor de ontwikkeling van intelligente beslissingsonder-
steunende systemen voor kredietverlening spelen tal van aspecten een rol. In dit
doctoraat benadrukken we dat modellen voor krediettoekenning idealiter zowel ac-
curaat als begrijpelijk moeten zijn. Wat het eerste betreft, kunnen we vaststellen
dat een brede waaier aan classificatie-algoritmen reeds is voorgesteld in de liter-
atuur. Een eerste objectief van dit onderzoek beoogt dan ook de prestatie van
deze algoritmen op een zinvolle en statistisch verantwoorde manier te bestuderen
op een aantal real-life krediet data sets. Verder stellen we het gebruik van neurale
netwerk regelextractie-technieken voor, gecombineerd met beslissingstabellen, om
zo intelligente en begrijpbare beslissingsondersteunende systemen voor kredietver-
lening te bouwen. Naast het gebruik van crisp beslissingsregels, onderzoeken we
tevens de kracht en interpreteerbaarheid van vage beslissingregels geëxtraheerd
met behulp van evolutionaire algoritmen en neurofuzzy systemen. Tenslotte on-
derzoeken we ook het gebruik van statistische methoden en neurale netwerken voor
het voorspellen van het tijdstip waarop klanten wanbetaler worden.

xx Samenvatting

Chapter 1

Introduction

The last decades witnessed a spectacular increase in computer infrastructures and
resources to store huge amounts of data. Many businesses have eagerly adopted
these data storing facilities to record information regarding their daily operations.
Examples are banks that store information regarding the repayment behavior of
their customers, supermarkets that store every purchase of an individual into their
data warehouses and stock exchanges that record stock prices at regular time inter-
vals. These are all businesses where massive amounts of data are being generated
and stored electronically on a daily basis.

Until recently, this data was analyzed using basic query and reporting utili-
ties. The advent of knowledge discovery in data (KDD) technology has created the
opportunity to extract more intelligent and advanced knowledge from these huge
collections of data. Machine learning is one of the key technologies underlying
KDD and aims at acquiring knowledge by learning patterns from data. Knowl-
edge of these patterns could then be efficiently used to optimize sales strategies or
business operations in order to gain profits or cut costs.

In this dissertation, we study the use of machine learning algorithms to develop
intelligent systems for credit scoring. The problem of credit scoring is essentially
a classification task which aims at distinguishing good payers from bad payers us-
ing all possible characteristics describing the applicant. It is our aim to develop
decision support systems for credit scoring which are both accurate and comprehen-
sible. Both criteria are believed to play a pivotal role in the successful deployment
of automated credit scoring systems.

1

2 Chapter 1. Introduction

1.1 The Knowledge Discovery in Data Process

The quest for knowledge extracted from data has been commonly referred to as
Knowledge Discovery in Data (KDD) and was first coined by Fayyad in 1996 as
follows:

”...the non-trivial process of identifying valid, novel, potentially useful,
and ultimately understandable patterns in data [84]”.

KDD is conceived as an iterative process consisting of the following steps: data
preprocessing, data mining, and post-processing (see Figure 1.1). These steps are

PSfrag replacements

post processing

data mining

data preprocessing

- verification and validation
- knowledge visualization

- sensitivity analysis

- decision support system development

- regression

- classification
- clustering

- association analysis

- sequence analysis

- dependence analysis

- data selection
- data cleaning

- missing value imputation

- outlier removal

- variable selection

Figure 1.1: The Knowledge Discovery in Data process.

typically executed in an iterative and ad-hoc manner. In the data preprocessing
phase, the data is selected and cleaned. Inconsistencies are removed and missing
values and outliers are dealt with. The preprocessed data set then serves as input
to the data mining phase. A distinction needs to be made between several types of
data mining. This is illustrated in Table 1.1. Predictive data mining tries to pre-
dict future values of a dependent variable based on patterns learnt from past data.
Regression and classification are the most popular predictive data mining tasks.
These are often also described as supervised learning tasks because a dependent
variable can be identified which will be used to steer the learning process. De-
scriptive data mining tries to identify patterns or relationships present in the data
without presuming a specific dependent variable (unsupervised learning). Cluster-
ing, association analysis, sequence analysis, and dependence analysis are the most
popular descriptive data mining tasks. One of the key technologies underlying

1.1. The Knowledge Discovery in Data Process 3

Data mining Task Characteristic Example

predictive regression predicting a continuous predicting stock prices,
data mining dependent variable sales amount

classification predicting a categoric predicting credit default,
dependent variable bankruptcy

descriptive clustering identifying homogeneous market segmentation
data mining subpopulations

association analysis identifying relationships identifying frequently
between items bought products

(market basket analysis)
sequence analysis identifying relationships identifying time sequence

between items over time of purchase
dependence analysis identifying dependencies identifying dependencies

between variables between medical
parameters

Table 1.1: Types of data mining.

the data mining step is machine learning. Machine learning is a multidisciplinary
research field providing a multitude of induction algorithms which aim at acquir-
ing knowledge by learning patterns from data. Machine learning algorithms have
been developed to tackle each of the data mining tasks depicted in Table 1.1.
Some examples are given in Table 1.2. The final phase of the KDD process is

Data mining task Machine learning algorithm

regression linear regression, regression trees,
neural networks, support vector machines

classification decision trees, neural networks,
k-nearest neighbor, rule induction

clustering k-means, Kohonen neural networks
association analysis Apriori
sequence analysis modified Apriori
dependence analysis Bayesian networks, graphical methods

Table 1.2: Example machine learning algorithms.

to post-process the knowledge and patterns extracted in the data mining phase.
Examples of tasks that are performed here are: verification and validation of the
patterns, visualization of the knowledge in alternative ways, sensitivity analysis,
and integration of the extracted patterns into a decision support or knowledge
application tailored to the specific business problem.

In this dissertation, we will especially focus on the data mining step and more
specifically on the use of machine learning methods for classification. This will be
investigated in the context of developing intelligent systems for credit scoring.

4 Chapter 1. Introduction

1.2 The Credit Scoring Classification Problem

Classification is one of the most frequently occurring tasks of human decision
making. A classification problem arises when an object needs to be assigned to a
predefined class or group according to its characteristics. A classification task is
sometimes also referred to as a supervised learning task since the classes or groups
are defined beforehand and can be used to steer the learning process. Many deci-
sion problems in a variety of domains such as engineering, medical science, human
sciences and management science can be considered as classification problems.
Popular examples are speech recognition, character recognition, medical diagno-
sis, bankruptcy prediction and credit scoring. Many of the ideas presented in this
dissertation are equally applicable to these other domains.

One of the key decisions financial institutions have to make is to decide whether
or not to grant a loan to an applicant. This basically boils down to a binary
classification problem which aims at distinguishing good payers from bad payers.
Until recently, this decision was made using a judgmental approach by merely
inspecting the application form details of the applicant. The credit expert then
decided whether the loan should be accepted or rejected using all possible relevant
information describing the socio-demographic status, economic conditions and in-
tentions of the applicant. The advent of data storage technology has facilitated
financial institutions to store all information regarding the characteristics and re-
payment behavior of credit applicants electronically. Together with the emergence
of advanced machine learning algorithms, this has motivated the need to build au-
tomated credit scoring models (also called scorecards) which aim at summarizing
all available information of an applicant in a score reflecting his/her creditworthi-
ness. If this score is above a predetermined threshold, credit is granted, otherwise
credit is denied.

A multitude of machine learning algorithms have been suggested in the litera-
ture to perform credit scoring. The question then naturally arises which technique
is most appropriate to build powerful scorecards. In this dissertation, we ar-
gue that two properties are essential for the successful adoption of a constructed
scorecard into the daily credit decision environment. First, the scorecard should
achieve a high performance in discriminating good customers from bad customers.
Although this may seem an obvious criterion, it will soon become clear that mea-
suring the accuracy of a credit scoring system is not a trivial exercise. A second
important critical success factor of a scorecard is its degree of transparency and
comprehensibility. In other words, a good scorecard should also be intelligent in
the sense that it should provide a clear insight to the expert about how and why
a particular applicant is classified as good or bad. This is one of the topics that
will be thoroughly investigated in this dissertation.

Traditional credit scoring models aim at distinguishing good payers from bad
payers at the time of underwriting the loan. However, the issue of when customers

1.3. Contributions 5

become bad is also very interesting to investigate since it can provide the bank with
the ability to compute the profitability over a customer’s lifetime. This problem
statement is often referred to as survival analysis and is also one of the research
issues that will be addressed in this dissertation.

1.3 Contributions

Having highlighted the need for powerful and intelligent credit scoring systems, we
will now turn to the major research questions and contributions of this dissertation.

1.3.1 Benchmarking state of the art classification algorithms

In a first chapter, we start with conducting a benchmarking study comparing the
classification accuracy of a number of state of the art classification algorithms on
a selection of publicly available data sets. This study will include a number of
recently suggested algorithms such as support vector machines and least squares
support vector machines which have not yet been thoroughly compared before. A
rigorous statistical setup will be employed using the appropriate test statistics to
compare the performance measures. It will allow us to draw conclusions regarding
the superiority of these recently suggested classifiers with respect to the other
algorithms.

1.3.2 Investigating the impact of various cut-off setting sche-

mes on scorecards

In a next chapter, the same benchmarking experiment will be repeated but hereby
focussing solely on 8 real-life credit scoring data sets originating among other from
major Benelux and U.K. financial institutions. In order to compute the classifi-
cation accuracy of a classifier, a cut-off needs to be chosen to map a classifier’s
continuous output to class labels. We will experiment with various cut-off setting
schemes and investigate their impact on the results. The following schemes will
be considered: a cut-off of 0.5, a cut-off assuming equal sample proportions and
cut-offs based on marginal good-bad rates around 5:1 and 3:1, respectively. Fur-
thermore, we will also include the area under the receiver operating characteristic
curve as a performance measure. To the best of our knowledge, such a study has
not yet been conducted before in the literature.

6 Chapter 1. Introduction

1.3.3 Developing intelligent systems for credit scoring using

neural network rule extraction and decision tables

In chapter 4, a new approach is suggested to build intelligent credit scoring systems
using neural network rule extraction and decision tables. Starting from a trained
and pruned neural network, we will extract rules in order to clarify its decision
process. Several types of neural network rule extraction methods will be studied
and compared. Alternative rule representation formalisms will be considered. In
a final step, the extracted rules will be represented using decision tables. A fully
deployable decision support system will then be built using the Prologa decision
table workbench. The methodology to develop decision support systems for credit
scoring using neural network rule extraction combined with decision tables is a
major contribution of this dissertation.

1.3.4 Developing intelligent systems for credit scoring using

fuzzy rule extraction

Chapter 5 studies the use of fuzzy rules for credit scoring. Fuzzy rules are be-
lieved to be more comprehensible than their crisp counterparts because the rules
are expressed in linguistic, vague terms which are more close to human thinking
and reasoning. Both evolutionary and neurofuzzy algorithms are investigated for
fuzzy rule extraction on a number of data sets. The innovative contributions of
this chapter are, the characterization of the difference between approximate and
descriptive fuzzy rules, the comparative study between the classification perfor-
mance of evolutionary and neurofuzzy systems for fuzzy rule extraction, and the
investigation of the suitability of the extracted fuzzy rules to build intelligent,
user-friendly credit scoring systems.

1.3.5 Using a neural network based approach for predicting

customer default times

In a final chapter, we discuss the use of survival analysis methods for predicting
when customers default. We start with reviewing the well-known statistical meth-
ods for doing survival analysis. We then indicate their shortcomings and present
the use of neural networks as an interesting alternative. After an extensive liter-
ature review, we present a new type of neural network for doing survival analysis
for credit scoring. The network is trained using the automatic relevance determi-
nation (ARD) extension of the Bayesian evidence framework of MacKay. This will
allow us to infer the importance of the inputs in a straightforward way. This is
also one of the major contributions of this dissertation.

1.4. Notation 7

1.4 Notation

A scalar x ∈ IR is denoted in normal script. Vectors are represented in boldface

notation and are assumed to be column vectors: x =









x1
x2
...
xn









. The corresponding

row vector is obtained using the transpose T : xT =









x1
x2
...
xn









T

= [x1 x2 ... xn].

Bold capital notation is used for matrices: X. We use n for the number of inputs
and N for the number of observations in a data set. The observation i is denoted
as xi whereas variable j is indicated as xj . The value of variable j for observation
i is represented as xi(j). We use P to denote a probability and p to denote a
probability density. We use the notation |M| to represent the determinant of
matrix M.

8 Chapter 1. Introduction

Chapter 2

An Overview of

Classification Techniques

and Issues

In this chapter, we start with explaining the basic concepts and functioning of a
selection of well-known classification methods1,2,3. We hereby discuss statistical
classifiers (logistic regression, linear, Fisher and quadratic discriminant analysis),
linear programming, Bayesian networks, decision trees and rules(C4.5), k-nearest
neighbor classifiers, neural networks and (least squares) support vector machines.
Although still other classification methods have been presented in the literature,
we believe we discuss the most important ones, each originating from their own
specific background.

Once the classification techniques have been thoroughly discussed, we further
elaborate on some issues and problems which also need to be addressed when de-
veloping classification models. We start with discussing several ways of splitting
up the data in order to assess the predictive performance of a classifier. Next,
we discuss the problem of input selection which aims at reducing the number of
inputs of a classifier without degrading its predictive performance. In a following

1B. Baesens, S. Viaene, D. Van den Poel, J. Vanthienen, G. Dedene, Using bayesian neural
networks for repeat purchase modelling in direct marketing, European Journal of Operational
Research, 138(1), pp. 191-211, 2002.

2B. Baesens, G. Verstraeten, D. Van den Poel, M. Egmont-Petersen, P. Van Kenhove, J.
Vanthienen, Bayesian network classifiers for identifying the slope of the customer lifecycle of
long-life customers, European Journal of Operational Research, forthcoming, 2003.

3T. Van Gestel, J. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene, B. De Moor, J.
Vandewalle, Benchmarking Least Squares Support Vector Machine Classifiers, Machine Learning,
forthcoming, 2003.

9

10 Chapter 2. An Overview of Classification Techniques and Issues

section, we present a first benchmarking study which compares the classification
accuracy of the discussed classification techniques on 10 publicly available real-
life data sets. A second benchmarking study investigates the predictive power of
some of the discussed classification techniques on two artificially generated, highly
non-linear classification problems. We then thoroughly discuss the shortcomings
of both benchmarking studies and identify the need for the area under the receiver
operating characteristic curve (AUC) as an additional performance measure. Test
statistics to compare the classification accuracy and the AUC are also discussed.

2.1 Classification Techniques

2.1.1 Logistic Regression

Given a training set of N data points D = {(xi, yi)}Ni=1, with input data xi ∈ IRn

and corresponding binary class labels yi ∈ {0, 1}, the logistic regression approach
to classification (LOG) tries to estimate the probability P (y = 1|x) as follows:

P (y = 1|x) = 1

1 + exp(−(w0 +wTx))
, (2.1)

and,

P (y = 0|x) = exp(−(w0 +wTx))

1 + exp(−(w0 +wTx))
, (2.2)

whereby x ∈ IRn is a n-dimensional input vector, w is the parameter vector and
the scalar w0 the intercept.

One typically employs a maximum likelihood procedure to estimate the param-
eters w0 and w of the logistic regression classifier. The probability of observing
either class is given by

p(y|x) = P (y = 1|x)y(1− P (y = 1|x))1−y, (2.3)

which is essentially a Bernouilli distribution [26]. The likelihood of observing the
data set D, given the observations are drawn independently from 2.3 is then given
by:

N
∏

i=1

P (yi = 1|xi)yi(1− P (yi = 1|xi))1−yi . (2.4)

The log-likelihood function then becomes

LL =

N
∑

i=1

yi log(P (yi = 1|xi)) + (1− yi) log(1− P (yi = 1|xi)). (2.5)

2.1. Classification Techniques 11

This log-likelihood function can then be maximized using the Newton-Raphson
algorithm [112]. Note that maximizing the log-likelihood LL is the same as min-
imizing the negative log-likelihood −LL. The latter is often referred to as the
cross-entropy error function [26].

In order to obtain a linear decision boundary, it is required that either P (y =
1|x) or a monotone transformation of P (y = 1|x) is linear in x [112]. Since

log(
P (y = 1|x)

1− P (y = 1|x)) = w0 +wTx, (2.6)

the logistic regression classifier assumes a linear decision boundary modeled by the

hyperplane {x|w0+wTx = 0}. Note that the term P (y=1|x)
1−P (y=1|x) is often referred to

as the odds in favor of y = 1.

One of the advantages of the logistic regression classifier is that it is a non-
parametric technique because no assumptions are made concerning the probability
distribution of the attributes.

2.1.2 Discriminant Analysis

Discriminant analysis assigns an observation x to the class i ∈ {0, 1} having the
largest posterior probability P (y = i|x). It hereby uses Bayes’theorem to compute
the posterior probability [26, 67, 112, 240]:

p(y|x) = p(x|y)p(y)
p(x)

. (2.7)

The Bayesian classification rule (Bayes’rule) then says: decide y = 1 if one of the
following conditions is met:

P (y = 1|x) > P (y = 0|x), (2.8)

or

p(x|y = 1)P (y = 1) > p(x|y = 0)P (y = 0), (2.9)

or

log p(x|y = 1)− log p(x|y = 0) > logP (y = 0)− logP (y = 1). (2.10)

When one assumes the class-conditional distributions p(x|y = i), i ∈ {0, 1}, are
multivariate Gaussian

p(x|y = i) =
1

(2π)n/2|Σi|1/2
exp{−1

2
(x− µi)

TΣ−1i (x− µi)}, (2.11)

12 Chapter 2. An Overview of Classification Techniques and Issues

with µi the mean vector of class i and Σi the covariance matrix of class i, the
classification rule 2.10 becomes: decide y = 1 if:

(x− µ1)
TΣ−11 (x− µ1)− (x− µ0)

TΣ−10 (x− µ0) < 2(log(P (y = 1))− log(P (y = 0)))
+ log |Σ0| − log |Σ1|,

(2.12)
The presence of the quadratic terms xTΣ−11 x and −xTΣ−10 x indicates that the
decision boundary is quadratic in x and therefore this classification technique is
called quadratic discriminant analysis (QDA). Note that the left hand side of
Equation 2.12 measures the difference in Mahalanobis distance between x and µ1

and x and µ0 but needs to be adapted according to the class proportions and the
covariance matrices in order to make a classification decision.

A simplification occurs if Σ0 = Σ1 = Σ. In this case, the quadratic terms
xTΣ−1x and −xTΣ−1x cancel and after rearranging Equation 2.12, the classifi-
cation rule becomes: decide y = 1 if:

(µ1 − µ0)
TΣ−1(x− µ) > log(P (y = 0))− log(P (y = 1)), (2.13)

with µ =
µ0+µ1

2 . Equation 2.13 is linear in x and the corresponding classification
technique is called linear discriminant analysis (LDA).

Since we usually do not know the exact values of µ0, µ1, Σ0 and Σ1, they have
to be estimated from the data sample D = {(xi, yi)}Ni=1. For LDA, the estimates
for Σ0 and Σ1 are typically pooled into one estimate for the common covariance
matrix Σ. Many statistical tests have been suggested to test the equality of the
covariance matrices and choose between LDA and QDA. The Bartlett test [217]
and Levene test [147] are amongst the most popular.

Fisher discriminant analysis is another popular classification technique which
aims at finding a linear combination of the variables that exhibits the largest
difference in the projected group means wTµ1 and w

Tµ0 relative to the projected
within class variance wTΣw by maximizing the following expression[87]:

argmaxw

(wTµ1 −wTµ0)
2

wTΣw
, (2.14)

or
argmaxw(wTµ1 −wTµ0)

2

subject to : wTΣw = 1.
(2.15)

Mathematical derivation then yields w = Σ−1(µ1 − µ0). The classification
rule then becomes: decide y = 1 if:

|wTx−wTµ1| < |wTx−wTµ0|, (2.16)

or,
(µ1 − µ0)

TΣ−1(x− µ) > 0, (2.17)

2.1. Classification Techniques 13

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

PSfrag replacements

x1

x
2

µ0 = [6 6]T
Σ0 =

[

1 −1
−1 2

]

µ1 = [10 10]T

Σ1 =

[

0.5 0
0 0.5

]

(a) QDA

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

PSfrag replacements

x1

x
2

µ0 = [6 6]T

Σ =

[

1 −1
−1 2

]

µ1 = [10 10]T

(b) LDA

Figure 2.1: Quadratic versus Linear Discriminant analysis.

which is the same as 2.13 when P (y = 0) = P (y = 1).

Both LDA and QDA are popular classification techniques which have been
successfully applied in various settings. In most cases reported in the literature
LDA outperforms QDA. One major reason for this is that in the QDA case more
parameters need to be estimated from the same sample and these estimates may
be poor for small data sets with many inputs [92].

The choice between discriminant analysis and logistic regression strongly de-
pends upon the characteristics of the data. If a data set contains many qualitative
inputs, the multivariate normality assumption no longer holds and a logistic re-
gression classifier will probably give the best performance [69, 183]. On the other
hand, when the inputs are quantitative and multivariate normally distributed,
discriminant analysis may proof to be the best classification technique.

Example 2.1

Consider a binary classification case with µ0 = [6 6]T , µ1 = [10 10]T , Σ0 =

[

1 −1
−1 2

]

,

Σ1 =

[

0.5 0
0 0.5

]

and with equal prior class probabilities (P (y = 1) = P (y = 0) = 0.5).

Since the covariance matrices are different, the decision boundary will be quadratic as
illustrated in the left pane of Figure 2.1. However, when assuming one common covariance

matrix Σ =

[

1 −1
−1 2

]

, a linear decision boundary is obtained (see right pane of Figure

2.1).

14 Chapter 2. An Overview of Classification Techniques and Issues

2.1.3 Linear Programming

Linear programming (LP) is probably one of the most commonly used techniques
for credit scoring in the industry nowadays. Since the pioneering work of Man-
gasarian [158], numerous LP methods for classification have been suggested in the
literature. A very popular formulation goes as follows [234, 235]:

min
w,ξ

N
∑

i=1

ξi (2.18)

subject to






wTxi ≥ c− ξi, yi = +1
wTxi ≤ c+ ξi, yi = −1
ξi ≥ 0, i = 1, ..., N,

(2.19)

whereby ξ represents the vector of ξi values. The first (second) set of inequalities
tries to separate the goods (bads) from the bads (goods) by assigning them a
score wTxi which is higher (lower) than the prespecified cut-off c. However, since
one has to take into account misclassifications, the positive slack variables ξi are
entered. The aim is then to minimize the misclassifications by minimizing the
sum of the slack variables ξi. Note that many variants of this method have been
proposed which use other cut-off strategies, objective functions, and/or require
some variables to be integer [90, 96, 235].

One of the advantages of using LP methods for credit scoring is that they can
easily model domain knowledge or a priori bias by including additional constraints
[235]. If, e.g., one knows a priori that variable xk has a larger impact on the score
than variable xl, one can add the constraint wk ≥ wl to the program. A major
difficulty with LP methods is the lack of a solid statistical underpinning which
makes it rather difficult to decide upon the statistical significance of the estimated
parameters and perform input selection. In [76], it was empirically shown that LP
methods do not perform quite as well as statistical regression methods.

2.1.4 Bayesian Networks for Classification

A Bayesian network (BN) represents a joint probability distribution over a set of
discrete, stochastic variables. It is to be considered as a probabilistic white-box
model consisting of a qualitative part specifying the conditional (in)dependencies
between the variables and a quantitative part specifying the conditional probabil-
ities of the data set variables [176]. Formally, a Bayesian network consists of two
parts B = 〈G,Θ〉. The first part G is a directed acyclic graph consisting of nodes
and arcs. The nodes are the variables x1, ..., xn in the data set whereas the arcs
indicate direct dependencies between the variables. The graph G then encodes the
independence relationships in the domain under investigation. The second part of

2.1. Classification Techniques 15

the network, Θ, represents the conditional probability distributions. It contains
a parameter θxj |Π(xj) = PB(xj |Π(xj)) for each possible value of xj , given each
combination of the set of direct parent variables of xj in G, Π(xj). The network
B then represents the following joint probability distribution:

PB(x1, ..., xn) =

n
∏

j=1

PB(xj |Π(xj)) =

n
∏

j=1

θxj |Π(xj). (2.20)

The first task when learning a Bayesian network is to find the structure G of
the network. Once we know the network structure G, the parameters Θ need to
be estimated. In general, these two estimation tasks are performed separately.
One commonly uses the empirical frequencies from the data D to estimate these
parameters 4:

θxj |Π(xj) = P̂D(xj |Π(xj)). (2.21)

It can be shown that these estimates maximize the log likelihood of the network
B given the data D [94]. Note that these estimates might be further improved by
a smoothing operation [94].

A Bayesian network is essentially a statistical model that makes it feasible
to compute the (joint) posterior probability distribution of any subset of unob-
served stochastic variables, given that the variables in the complementary subset
are observed. This functionality makes it possible to use a Bayesian network as a
statistical classifier by applying the winner-takes-all rule to the posterior probabil-
ity distribution for the (unobserved) class node [66]. The underlying assumption
behind the winner-takes-all rule is that all gains and losses are equal (for a dis-
cussion of this aspect see, e.g., [66]). Consider the Bayesian network depicted in
Figure 2.2 (taken from [73]). It consists of four variables x1, x2, x3, x4 and one
classification node y. The variables are all binary and can be either true or false.
The conditional probability tables are also given. Suppose we want to compute the
probability P (y | x1, x2,¬x3, x4). From the definition of conditional probability,
we have:

P (y | x1, x2,¬x3, x4) = P (y,x1,x2,¬x3,x4)
P (x1,x2,¬x3,x4)

= P (y,x1,x2,¬x3,x4)
P (y,x1,x2,¬x3,x4)+P (¬y,x1,x2,¬x3,x4)

.

(2.22)

By looking at the graph and using equation 2.20, we have P (y, x1, x2,¬x3, x4) =
P (x1)P (x2 | x1)P (y | x1, x2)P (x4)P (¬x3 | y, x4), or, by using the probability
tables, P (y, x1, x2,¬x3, x4) = 0.3×0.1×0.05×0.35×0.99 = 0.00051975. Likewise,
we can find that P (¬y, x1, x2,¬x3, x4) = 0.3×0.1×0.95×0.35×0.25 = 0.00249375.
Hence, from equation 2.22, we have P (y | x1, x2,¬x3, x4) = 0.00051975

0.00051975+00249375 =
0.1725, and P (¬y | x1, x2,¬x3, x4) = 0.8275.

4Note that we hereby assume that the data set is complete, i.e., no missing values.

16 Chapter 2. An Overview of Classification Techniques and Issues

PSfrag replacements

x3

x4 y

x2x1
x1 0.3
¬x1 0.7

x4 0.35
¬x4 0.65

x1 ¬x1
x2 0.1 0.6
¬x2 0.9 0.4

x1 ¬x1
x2 ¬x2 x2 ¬x2

y 0.05 0.5 0.45 0.6
¬y 0.95 0.5 0.55 0.4

y ¬y
x4 ¬x4 x4 ¬x4

x3 0.01 0.5 0.75 0.31
¬x3 0.99 0.5 0.25 0.69

Figure 2.2: An example Bayesian network classifier [73].

When one or more variables are missing, the posterior probability of each un-
observed node can be computed using advanced algorithms (e.g., [145]). However,
this is less likely to occur in a classification setting.

Example 2.2

In [14, 253], several types of Bayesian network classifiers were adopted to predict the
sign of the customer lifecycle slope which indicates whether the customer will increase
or decrease his/her future spending from initial purchase information. Figure 2.3 depicts
a Bayesian network classifier that was learned from UPC scanner data obtained from a
large Belgian Do-It-Yourself retail chain. The total contribution of the client (TotCont),

PSfrag replacements

SlopesSign

NumbArt MaxPerc

TotCont

Figure 2.3: Example of a Bayesian network classifier for marketing [14].

the total number of articles bought (NumbArt) and the maximum percentage of prod-
ucts bought in one product family (MaxPerc) proved to be very powerful predictors for
predicting the sign of the customer lifecycle slope.

2.1. Classification Techniques 17

Example 2.3

In [8], the power and usefulness of Bayesian network classifiers for credit scoring was
evaluated. Various types of Bayesian network classifiers were evaluated and contrasted
including unrestricted Bayesian network classifiers learned using Markov Chain Monte
Carlo (MCMC) search. Figure 2.4 provides an example of an (unrestricted) Bayesian
network that was learned for the publicly available German credit data set (see chapter
3). It was shown that MCMC Bayesian network classifiers yielded a very good perfor-
mance and by using the Markov blanket concept5, a natural form of feature selection
was obtained, which resulted in parsimonious and powerful models for financial credit
scoring.

PSfrag replacements

Duration

Checking Account Credit Amount

Good/Bad

Foreign WorkerSavings Account

Figure 2.4: Example of a Bayesian network classifier for credit scoring [8].

2.1.5 The naive Bayes classifier

A simple classifier, which in practice often performs surprisingly well, is the naive
Bayes classifier [66, 130, 143]. This classifier basically learns the class-conditional
probabilities p(xj |y) of each variable xj given the class label y. A new test case x
is then classified by using Bayes’ rule to compute the posterior probability of each
class y given the vector of observed variable values:

p(y|x) = p(y)p(x|y)
p(x)

. (2.23)

The simplifying assumption behind the naive Bayes classifier is that the variables
are conditionally independent given the class label. Hence,

p(x|y) =
n
∏

j=1

p(xj |y). (2.24)

5If the direct parents of the classification node C are denoted by ΠC and the direct children
by ΣC , the Markov blanket of node C is given by ΠC ∪ ΣC ∪ ΠΣC . It can be shown that once
all variables in the Markov blanket of the classification node C are observed, it is independent
from any other remaining variables in the network.

18 Chapter 2. An Overview of Classification Techniques and Issues

This assumption simplifies the estimation of the class-conditional probabilities
from the training data. Notice that one does not estimate the denominator in
expression 2.23 since it is independent of the class. Instead, one normalizes the
numerator term p(y)p(x|y) to 1 over all classes. Naive Bayes classifiers are easy to
construct since the structure is given a priori and no structure learning phase is
required. The probabilities p(xj |y) are estimated by using the frequency counts for
the discrete variables and a normal or kernel density based method for continuous
variables [130]. Figure 2.5 provides a graphical representation of a naive Bayes
classifier.

PSfrag replacements y

x1 x2 x3 x4 x5

Figure 2.5: The naive Bayes classifier.

2.1.6 Tree augmented naive Bayes classifiers

In [94], tree augmented naive Bayes classifiers (TANs) were presented as an exten-
sion of the naive Bayes Classifier. TANs relax the independence assumption by
allowing arcs between the variables. An arc from variable xk to xl then implies
that the impact of xk on the class variable also depends on the value of xl. An
example of a TAN is presented in Figure 2.6. In a TAN network the class variable
has no parents and each variable has as parents the class variable and at most one
other variable. The variables are thus only allowed to form a tree structure. In
[94], a procedure was presented to learn the optional arrows in the structure that
forms a TAN network. This procedure is based on an earlier algorithm suggested
by Chow and Liu (CL) [46]. The procedure consists of the following five steps.

1. Compute the conditional mutual information given the class variable y,
I(xk;xl|y), between each pair of variables, k 6= l. I(xk;xl|y) is defined
as follows:

I(xk;xl|y) =
∑

p(xk, xl, y)log
p(xk, xl|y)

p(xk|y)p(xl|y)
. (2.25)

This function is an approximation of the information that xl provides about
xk (and vice versa) when the value of y is known.

2. Build a complete undirected graph in which the nodes are the variables.
Assign to each arc connecting xk to xl the weight I(xk;xl|y).

2.1. Classification Techniques 19

3. Build a maximum weighted spanning tree.

4. Transform the resulting undirected tree to a directed one by choosing a root
variable and setting the direction of all arcs to be outward from it.

5. Add the classification node y and draw an arc from y to each xk.

We will use Kruskal’s algorithm in step 3 to construct the maximum weighted
spanning tree [141]. In [94], it was proven that the above procedure builds TANs
that maximize the log likelihood of the network given the training data and has
time complexity O(n2 · N) with n the number of variables and N the number of
data points. Experimental results indicated that TANs outperform naive Bayes
with the same computational complexity and robustness [94].

PSfrag replacements

y

x1 x2

x3

x4 x5

Figure 2.6: The tree augmented naive Bayes classifier.

2.1.7 Decision Trees and Rules

A decision tree represents a structure with two types of components [187]:

• leaf nodes that assign class labels to observations;

• internal nodes that specify tests on individual attributes with one branch
and subtree for each outcome of the test.

The tree classifies observations in a top-down manner, starting from the root and
working one’s way down according to the outcomes of the tests at the internal
nodes, until a leaf node has been reached and a class label has been assigned.
Figure 2.7 presents an example of a decision tree taken from [163]. The tree
classifies Saturday mornings as suitable or not for playing tennis.

Many decision tree and rule induction algorithms have already been suggested
in the literature [33]. One of the most popular is the C4.5 algorithm [187]. C4.5

20 Chapter 2. An Overview of Classification Techniques and Issues

PSfrag replacements Outlook

Humidity Yes Wind

RainSunny Overcast

Strong WeakHigh Normal

NoNo YesYes

Figure 2.7: Example Decision Tree [163].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

p

E
n
tr
o
p
y

Figure 2.8: The Entropy measure.

induces decision trees based on information theoretic concepts. Let p1 (p0) be
the proportion of examples of class 1 (0) in sample S. The entropy of S is then
calculated as follows:

Entropy(S) = −p1 log2(p1)− p0 log2(p0), (2.26)

whereby p0 = 1− p1. Entropy is used to measure how informative an attribute is
in splitting the data. Figure 2.8 provides a graphical representation of the Entropy
measure. Basically, the entropy measures the order (or disorder) in the data with
respect to the classes. It equals 1 when p1 = p0 = 0.5 (maximal disorder, minimal
order) and 0 (maximal order, minimal disorder) when p1 = 0 or p0 = 0. In the
latter case, all observations belong to the same class.

2.1. Classification Techniques 21

Gain(S, xj) is defined as the expected reduction in entropy due to sorting (split-
ting) on attribute xj :

Gain(S, xj) = Entropy(S)−
∑

v ∈ values(xj)

|Sv|
|S| Entropy(Sv), (2.27)

where values(xj) represents the set of all possible values of attribute xj , Sv the
subset of S where attribute xj has value v and |Sv| the number of observations in
Sv. The Gain criterion was used in ID3, the forerunner of C4.5, to decide upon
which attribute to split at a given node [186]. However, when this criterion is
used to decide upon the node splits, the algorithm favors splits on attributes with
many distinct values. Hence, when the data set contains an ID attribute with
a distinct value for each observation, the Gain criterion will select it as the best
splitting decision. In order to rectify this, C4.5 applies a normalization and uses
the gainratio criterion which is defined as follows:

Gainratio(S, xj) =
Gain(S, xj)

SplitInformation(S, xj)
with

SplitInformation(S, xj) = −
∑

k ∈ values(xj)

|Sk|
|S| log2

|Sk|
|S| .

(2.28)

The SplitInformation is the entropy of S with respect to the values of xj . It
measures how broadly and uniformly attribute xj splits the data and it discourages
the selection of attributes with many uniformly distributed values [163]. Consider
e.g. the ID example whereby each instance has a distinct ID. If there are N
instances, the SplitInformation will be log2(N). However, if we consider a boolean
attribute which splits the N instances exactly in half, the SplitInformation will be
1. If both attributes have the same Gain, the latter will obviously have a higher
Gainratio and will be selected [163]. However, when |Sk| ≈ |S| for an attribute
which has the same value for most of the observations in S, the SplitInformation
will be very small and thus the Gainratio may become very large. To counter this
effect, C4.5 first computes the Gain of all attributes and then selects the attribute
with the highest Gainratio, subject to the constraint that its Gain is at least as
large as the average Gain over all attributes examined.

The tree is then constructed by means of recursive partitioning until the cur-
rent leaf nodes contain only instances of a single class or until no test offers any
improvement. However, since most real-life data sets are noisy, and since in most
cases the attributes have limited predictive power, this tree growing strategy often
results in a complex tree with many internal nodes that overfits the data. C4.5
tries to remedy this phenomenon by a pruning procedure that is executed retro-
spectively once the full tree has been grown. It hereby uses a heuristic based on
the binomial distribution (see [187] for more details)

The unpruned C4.5 tree can be easily converted into a rule set by deriving a
rule for each path from the root of the unpruned tree to a leaf node (C4.5rules).

22 Chapter 2. An Overview of Classification Techniques and Issues

These rules may then be further pruned by removing conditions based on a similar
procedure as with the tree. Since the rules are no longer mutually exclusive and
exhaustive after pruning, C4.5 orders them heuristically and also chooses a default
class.

2.1.8 K-Nearest Neighbour Classifiers

K-nearest neighbour classifiers (KNN) classify a data instance by considering only
the k most similar data instances in the training set [1, 67, 112]. The class label is
then assigned according to the class of the majority of the k-nearest neighbours.
The choice of k can be made using a cross-validation method. Ties can be avoided
by choosing k odd or assigning the observation to the default class. Note that it
is important to first normalize the inputs to e.g. mean 0 and standard deviation
1 since they may have been measured in different units. One commonly opts for
the Euclidean distance as the similarity measure:

d(xi,xj) = ||xi − xj || = [(xi − xj)
T (xi − xj)]

1/2, (2.29)

where xi,xj ∈ IRn are the input vectors of data instance i and j, respectively.
Henley and Hand [117] propose the use of an adjusted Euclidean metric:

da(xi,xj) = [(xi − xj)
T (I+ dwwT)(xi − xj)]

1/2, (2.30)

where I represents the identity matrix, w the weights obtained from Fisher dis-
criminant analysis or logistic regression, and d a parameter which needs to be
tuned individually for each data set. For an overview of other metrics used in
k-nearest neighbor classification, see e.g. [67, 112].

Example 2.4

Figure 2.9 illustrates the 5-nearest neighbor classification rule. Starting from the test
point x, the classifier grows a spherical region until the 5 nearest training points are
enclosed. The classifier will then assign the label × to x since 3 of the 5 nearest neighbors
have this label [67].

It is possible to compute theoretical asymptotic upperbounds on the perfor-
mance of the k-nearest neighbor classifier [67, 112]. A disadvantage of the k-nearest
neighbor classifier is its large computing power requirement, since for classifying
an object its distance to all the objects in the training set has to be calculated.
Furthermore, when many irrelevant attributes are present, the classification per-
formance may degrade when observations have distant values for these attributes.

2.1.9 Neural Networks

Neural networks (NNs) are mathematical representations inspired by the function-
ing of the human brain. Many types of neural networks have been suggested in

2.1. Classification Techniques 23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

x1

x
2 x

Figure 2.9: The 5-nearest neighbor classifier [67].

the literature for both supervised and unsupervised learning [26, 193, 267]. Since
our focus is on classification, we will discuss the Multilayer Perceptron (MLP)
neural network in more detail because it is the most popular neural network for
classification.

A MLP is typically composed of an input layer, one or more hidden layers
and an output layer, each consisting of several neurons. Each neuron processes
its inputs and generates one output value which is transmitted to the neurons in
the subsequent layer. One of the key characteristics of MLPs is that all neurons
and layers are arranged in a feedforward manner and no feedback connections are
allowed. Figure 2.10 provides an example of an MLP with one hidden layer and
one output neuron.

The output of hidden neuron i is then computed by processing the weighted

inputs and its bias term b
(1)
i as follows:

hi = f (1)(b
(1)
i +

n
∑

j=1

Wijxj). (2.31)

W is the weight matrix whereby Wij denotes the weight connecting input j to
hidden unit i. In an analogous way, the output of the output layer is computed as
follows:

z = f (2)(b(2) +

nh
∑

j=1

vjhj), (2.32)

with nh the number of hidden neurons and v the weight vector whereby vj repre-
sents the weight connecting hidden unit j to the output neuron. The bias inputs
play a similar role as the intercept term in a classical linear regression model.
A threshold function is then typically applied to map the network output y to
a classification label. The transfer functions f (1) and f (2) allow the network to
model non-linear relationships in the data. Examples of transfer functions that

24 Chapter 2. An Overview of Classification Techniques and Issues

PSfrag replacements

x1

...

xn

b
(1)
1

b(2)

b
(1)
nh

h1

hnh

vnh

W11

Wnhn

z

v1

Figure 2.10: Architecture of a Multilayer Perceptron with one hidden layer.

are commonly used are the sigmoid f(x) = 1
1+exp(−x) , the hyperbolic tangent

f(x) = exp(x)−exp(−x)
exp(x)+exp(−x) and the linear transfer function f(x) = x (see Figure 2.11).

For a binary classification problem, it is convenient to use the logistic transfer
function in the output layer (f (2)), since its output is limited to a value within the
range [0, 1]. This allows the output y of the MLP to be interpreted as a condi-
tional probability of the form P (y = 1|x)[26, 192]. In that way, the neural network
naturally produces a score per data instance, which allows the data instances to
be ranked accordingly for scoring purposes (e.g. customer scoring).

Note that multiple hidden layers might be used but theoretical works have
shown that NNs with one hidden layer are universal approximators capable of
approximating any continuous function to any desired degree of accuracy on a
compact interval (universal approximation property) [26, 123]. Remark that one
might also use M output neurons for an M -class classification problem whereby
the class is then assigned according to the output neuron with the highest output
value (winner take all learning) [26].

The weights W and v are the crucial parameters of the network and need to
be estimated during a learning process. Given a training set of N data points
D= {(xi, yi)}Ni=1, with input data xi ∈ IRn and corresponding binary class labels
yi ∈ {0, 1}, the weights of the network are first randomly initialized and then
iteratively adjusted so as to minimize an objective function, typically the sum of

2.1. Classification Techniques 25

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

x

f
(x
)

(a) sigmoid

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

x

f
(x
)

(b) tanh

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

PSfrag replacements

x

f
(x
)

(c) linear

Figure 2.11: Neural network transfer functions.

squared errors (SSE)

ED =
1

2

N
∑

i=1

(yi − zi)
2 (2.33)

where zi is the predicted network output for observation i. The backpropagation
algorithm originally proposed by Rumelhart et al. is probably the best known
example of the above mechanics [197]. It performs the optimization by using
repeated evaluation of the gradient of ED and the chain rule of derivative calculus.
Due to the problems of slow convergence and relative inefficiency of this algorithm,
new and improved optimization methods (e.g. Levenberg-Marquardt and Quasi-
Newton) have been suggested. For an overview, see [26].

It has to be noticed that for classification purposes the sum of squared er-
ror function ED of Equation 2.33 is no longer the most appropriate optimization
criterion because it was derived using maximum likelihood reasoning on the as-
sumption of Gaussian distributed target data [26, 35, 218]. Since the target output
is categorical in a classification context, this assumption is no longer valid. A more
appropriate objective function is the cross-entropy function which was explained

26 Chapter 2. An Overview of Classification Techniques and Issues

in subsection 2.1.1:

G = −
N
∑

i=1

{yi log(zi) + (1− yi) log(1− zi)} . (2.34)

It can easily be verified that this error function reaches its minimum when zi = yi
for all i = 1, ..., N . Optimization of G with respect to the weightsW and v may be
carried out by using the optimization algorithms mentioned in [26]. Note that the
logistic regression classifier discussed in section 2.1.1 is basically a simplified neural
network with only one neuron with a sigmoid activation function and trained to
minimize the cross-entropy error.

The ultimate goal of NN training is to produce a model which performs well on
new, unseen test instances. If this is the case, we say that the network generalizes
well. To do so, we basically have to avoid the network from fitting the noise
or idiosyncracies in the training data. This can be realized by monitoring the
error on a separate validation set during training of the network. When the error
measure on the validation set starts to increase, training is stopped, thus effectively
preventing the network from fitting the noise in the training data (early stopping).
However, this causes loss of data that cannot be used for estimating the weights
and hence, this method may not be appropriate for small data sets.

A superior alternative is to add a penalty term to the objective function as
follows [26, 226]

F (w) = G+ αEW (2.35)

with

EW =
1

2

∑

i

w2
i (2.36)

whereby w is the weight vector representing all weightsW and v. This method for
improving generalization constrains the size of the network weights and is referred
to as regularization. When the weights are kept small, the network response will
be smooth. This decreases the tendency of the network to fit the noise in the
training data.

The success of NNs with weight regularization obviously depends strongly on
finding appropriate values for the weights w and the hyperparameter α. The
Bayesian evidence framework developed by David MacKay [154, 155] allows to set
the regularization parameter α on-line during the optimization process. Further-
more, the Automatic Relevance Determination (ARD) extension of this framework
allows one to assess the importance of the inputs. Preliminary results have shown
that this framework works very well for customer retention scoring [15, 254].

2.1. Classification Techniques 27

2.1.10 Support Vector Machine Classifiers

Given a training set of N data points {(xi, yi)}Ni=1, with input data xi ∈ IRn

and corresponding binary class labels yi ∈ {−1,+1}, the support vector machine
(SVM) classifier, according to Vapnik’s original formulation satisfies the following
conditions [29, 54, 200, 250, 251, 252]:

{

wTϕ(xi) + b ≥ +1, if yi = +1
wTϕ(xi) + b ≤ −1, if yi = −1 (2.37)

which is equivalent to

yi[w
Tϕ(xi) + b] ≥ 1, i = 1, ..., N. (2.38)

The non-linear function ϕ(·) maps the input space to a high (possibly infinite)
dimensional feature space. In this feature space, the above inequalities basically
construct a hyperplane wTϕ(x)+b = 0 discriminating between both classes. This
is visualized in Figure 2.12 for a typical two-dimensional case.

PSfrag replacements

x

x x

x

x
x

x

x x

x

+

+
+

+

+

+

+
+

+

+

wTϕ(x) + b = −1

wTϕ(x) + b = 0

wTϕ(x) + b = +1

ϕ1(x)

ϕ2(x)

2/||w||
Class +1

Class -1

Figure 2.12: Illustration of SVM optimization of the margin in the feature space.

In primal weight space the classifier then takes the form

y(x) = sign[wTϕ(x) + b], (2.39)

but, on the other hand, is never evaluated in this form. One defines the convex
optimization problem:

min
w,b,ξ

J (w, b, ξ) =
1

2
wTw + C

N
∑

i=1

ξi (2.40)

28 Chapter 2. An Overview of Classification Techniques and Issues

subject to
{

yi[w
Tϕ(xi) + b] ≥ 1− ξi, i = 1, ..., N

ξi ≥ 0, i = 1, ..., N.
(2.41)

The variables ξi are slack variables which are needed in order to allow misclassifi-
cations in the set of inequalities (e.g. due to overlapping distributions). The first
part of the objective function tries to maximize the margin between both classes
in the feature space, whereas the second part minimizes the misclassification er-
ror. The positive real constant C should be considered as a tuning parameter in
the algorithm. Notice that this formulation is closely related to the LP formula-
tion. The major differences are that the SVM classifier introduces a large margin
(or regularization) term 1

2w
Tw in the objective function, considers a margin to

separate the classes, and allows for non-linear decision boundaries because of the
mapping ϕ(·).

The Lagrangian to the constraint optimization problem (2.40) and (2.41) is
given by

L(w, b, ξ;α,ν) = J (w, b, ξ)−
N
∑

i=1

αi{yi[wTϕ(xi) + b]− 1+ ξi}−
N
∑

i=1

νiξi. (2.42)

The solution to the above optimization problem is given by the saddle point
of the Lagrangian, i.e. by minimizing L(w, b, ξ;α,ν) with respect to w, b, ξ and
maximizing it with respect to α and ν:

max
α,ν

min
w,b,ξ

L(w, b, ξ;α,ν). (2.43)

One obtains






















∂L
∂w = 0 → w =

∑N
i=1αiyiϕ(xi)

∂L
∂b = 0 → ∑N

i=1αiyi = 0

∂L
∂ξi

= 0 → 0 ≤ αi ≤ C , i = 1, ..., N.

(2.44)

By substituting the first expression into (2.39), the resulting classifier now be-
comes:

y(x) = sign[

N
∑

i=1

αi yiK(xi,x) + b], (2.45)

whereby K(xi,x) = ϕ(xi)
Tϕ(x) is taken with a positive definite kernel satisfying

the Mercer theorem.

The Lagrange multipliers αi are then determined by means of the following
optimization problem (dual problem):

max
αi
−1

2

N
∑

i,j=1

yiyjK(xi,xj)αiαj +
N
∑

i=1

αi (2.46)

2.1. Classification Techniques 29

subject to










N
∑

i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, ..., N.

(2.47)

The entire classifier construction problem now simplifies to a convex quadratic
programming (QP) problem in αi. Note that one does not have to calculate w nor
ϕ(xi) in order to determine the decision surface. Thus, no explicit construction
of the nonlinear mapping ϕ(x) is needed. Instead, the kernel function K will be
used. For the kernel function K(·, ·) one typically has the following choices:

K(x,xi) = xTi x, (linear kernel)
K(x,xi) = (1 + xTi x/c)

d, (polynomial kernel of degree d)
K(x,xi) = exp{−‖x− xi‖22/σ2}, (RBF kernel)
K(x,xi) = tanh(κxTi x+ θ), (MLP kernel),

where d, c, σ, κ and θ are constants. Notice that the Mercer condition holds for
all c, σ ∈ IR+ and d ∈ N values in the polynomial and RBF case, but not for
all possible choices of κ and θ in the MLP case. The scale parameters c, σ and
κ determine the scaling of the inputs in the polynomial, RBF and MLP kernel
function. This scaling is related to the bandwidth of the kernel in statistics, where
it is shown that the bandwidth is an important parameter of the generalization
behavior of a kernel method [188].

Typically, many of the αi will be equal to zero (sparseness property). The
training observations corresponding to non-zero αi are called support vectors and
are located close to the decision boundary.

2.1.11 Least Squares Support Vector Machine Classifiers

Vapnik’s SVM classifier formulation was modified in [227] into the following LS-
SVM formulation:

min
w,b,e

J (w, b, e) =
1

2
wTw + γ

1

2

N
∑

i=1

e2i (2.48)

subject to the equality constraints

yi [w
Tϕ(xi) + b] = 1− ei, i = 1, ..., N. (2.49)

This formulation consists of equality instead of inequality constraints and takes
into account a squared error with regularization term similar to ridge regression.

The solution is obtained after constructing the Lagrangian:

L(w, b, e;α) = J (w, b, e)−
N
∑

i=1

αi{yi[wTϕ(xi) + b]− 1 + ei}, (2.50)

30 Chapter 2. An Overview of Classification Techniques and Issues

where αi ∈ IR are the Lagrange multipliers that can be positive or negative in
the LS-SVM formulation. From the conditions for optimality, one obtains the
Karush-Kuhn-Tucker (KKT) system:



















∂L
∂w = 0 → w =

∑N
i=1 αiyiϕ(xi)

∂L
∂b = 0 → ∑N

i=1 αiyi = 0
∂L
∂ei

= 0 → αi = γei, i = 1, ..., N
∂L
∂αi

= 0 → yi[w
Tϕ(xi) + b]− 1 + ei = 0, i = 1, ..., N.

(2.51)

Note that sparseness is lost which is clear from the condition αi = γei. As in
standard SVMs, we never calculate w nor ϕ(xi). Therefore, we eliminate w and
e yielding [224]

[

0 yT

y Ω+ γ−1I

] [

b
α

]

=

[

0
1

]

(2.52)

with y = [y1; ...; yN], 1 = [1; ...; 1], e = [e1; ...; eN], α = [α1; ...;αN]. Mercer’s
condition is applied within the Ω matrix

Ωij = yiyj ϕ(xi)
Tϕ(xj) = yiyj K(xi,xj). (2.53)

The LS-SVM classifier is then constructed as follows:

y(x) = sign[
N
∑

i=1

αiyiK(x,xi) + b]. (2.54)

Note that the matrix in (2.52) is of dimension (N + 1) × (N + 1). For large
values of N , this matrix cannot easily be stored, such that an iterative solution
method for solving it is needed. A Hestenes-Stiefel conjugate gradient algorithm
is suggested in [224] to overcome this problem. Basically, the latter rests upon a
transformation of the matrix in (2.52) to a positive definite form [224]. A straight-
forward extension of LS-SVMs to multiclass problems has been proposed in [228],
where additional outputs are taken in order to encode multiple classes as is often
done in classical neural networks methodology [26]. A drawback of LS-SVMs is
that sparseness is lost due the choice of a 2-norm. However, this can be circum-
vented in a second stage by a pruning procedure which is based upon removing
training points guided by the sorted support value spectrum [225]. In [242, 244],
the LS-SVM classifier formulation was related to regularized Fisher discriminant
analysis in the feature space and the use of Fisher targets {−N/N−,+N/N+} as an
alternative to the targets {−1,+1} was presented and discussed (see also [92, 240]
for a more elaborate discussion).

2.2 Data Set Split Up

Assessing the predictive power of a classification technique is by no means a trivial
exercise. One could use the same data for both training and estimating the accu-

2.2. Data Set Split Up 31

PSfrag replacements

Run 1

Run 2

Run 10

. . .

Figure 2.13: 10-fold cross-validation.

racy of a classifier (resubstitution estimate). However, this will often result in an
overly optimistic accuracy estimate since a trained classifier is typically somewhat
biased towards the training data. This is especially the case for classification tech-
niques with many parameters (e.g. neural networks) which are rather sensitive to
overfitting i.e. modeling the noise in the training data. Note however that criteria
have been suggested in the literature that penalize the training set performance
according to the complexity of the classification technique and thus to its ability
of overfitting. Examples are the Akaike Information Criterion [2], the Generalized
Prediction Error [164] and the Network Information Criterion [166].

Another more popular method for performance assessment is the k-fold cross-
validation (CV) method whereby the data set is split into k mutually exclusive
folds of nearly equal size [139]. The classifier is then trained k times each time
using k− 1 folds for training (training folds) and the remaining fold for evaluation
(validation fold). The CV performance estimate is then obtained by averaging the
k validation fold estimates found during the k runs of the CV procedure. The
variance of this estimate can then also be easily computed. If k equals the sample
size, this is called leave-one-out cross-validation. Common values for k are 5 and
10 [139]. In a stratified cross-validation experiment, all folds have approximately
the same class proportions as the original data set. The CV method is often used
to assess the performance of classification techniques on small data sets. Figure
2.13 illustrates a 10-fold CV experiment whereby the white squares represent the
training folds and the grey squares the validation fold.

For large data sets, one commonly adopts a single training set/test set split
up. The classifier is then estimated on the training set and evaluated on the test
set. One typically uses 2

3 of the observations for training and the remaining 1
3 for

testing. In order to obtain a variance of the performance estimate, several sampling
strategies may be used. One can create B new data subsamples of predefined size
by each time randomly drawing observations with replacement from the original
data set (bootstrapping)[71]. Each of the B subsamples may then be split into a
training set and a test set and the average performance estimate is then found
by averaging all B test set performances. Another option is to create a number

32 Chapter 2. An Overview of Classification Techniques and Issues

of randomizations by simply randomizing the order of the observations and then
splitting each randomization in a training set and test set (cf. infra).

2.3 Input Selection

Input selection is a commonly adhered technique to reduce model complexity. In
a classification context, input selection aims at removing irrelevant or redundant
inputs from the classifier. The removal of inputs will lead to faster training and
faster evaluation of the classifier. Furthermore, classification models with fewer
inputs are also more attractive for humans since they are less complex and thus
easier to comprehend. Additionally, input pruning may also augment the predic-
tive power of the classifier [26].

PSfrag replacements

{}

{x1} {x2} {x3} {x4}

{x1, x2} {x1, x3} {x2, x3} {x1, x4} {x2, x4} {x3, x4}

{x1, x2, x3} {x1, x2, x4} {x1, x3, x4} {x2, x3, x4}

{x1, x2, x3, x4}

forward

backward

Figure 2.14: Input search space.

Selecting the best subset of a set of n input variables as predictors for a clas-
sifier is a non-trivial problem. This follows from the fact that the optimal input
subset can only be obtained when the input space is exhaustively searched. When
n inputs are present, this would imply the need to evaluate 2n − 1 input subsets
(see Figure 2.14). Unfortunately, as n grows, this very quickly becomes compu-
tationally infeasible [129]. For that reason, heuristic search procedures are often
preferred. The backward selection scheme starts from a full input set and step-
wise prunes input variables that are undesirable according to some heuristic. The
forward selection scheme starts from the empty input set and step-wise adds input
variables that are desirable.

2.3. Input Selection 33

Input selection can either be performed as a pre-processing step, independent
of the classification algorithm, or explicitly make use of it. The former approach is
termed filter, the latter wrapper [18, 129]. Filter methods operate independently of
any learning algorithm. Undesirable inputs are filtered out of the data before the
classifier is trained. Filters typically make use of correlation based or entropy based
measures to detect the redundant inputs. Among the well-known filter approaches
are FOCUS [4] and Relief [138]. Wrapper methods make use of the trained classifier
to evaluate the usefulness of inputs. The input evaluation heuristic that is used is
typically based upon inspection of the trained parameters and/or comparison of the
predictive performance under different input subset configurations. Input selection
is then often performed in a sequential way, e.g. guided by a best-first input
selection strategy. A multitude of wrapper input selection methods have been
proposed in the context of neural networks e.g. [15, 18, 28, 164, 190, 191, 209, 254].
These methods generally rely on the use of sensitivity heuristics, which try to
measure the impact of input changes on the output of the trained network. Inputs
may then be ranked (soft input selection) and/or pruned (hard input selection)
according to their sensitivity values.

Example 2.5

In [254], we studied the problem of repeat-purchase modeling in a direct marketing set-
ting using Belgian data. The case involved the detection and qualification of the most
relevant RFM (Recency, Frequency and Monetary) variables for predicting purchase inci-
dence. We hereby used a neural network wrapper as our input pruning method. Results
indicated that the elimination of redundant and/or irrelevant inputs by means of the
discussed input selection method allowed us to significantly reduce model complexity
without degrading the predictive generalization ability. This research was further ex-
tended in [255], where a wrapper was constructed using an LS-SVM classifier. The
proposed wrapper also performed very well for the case at hand.

Example 2.6

In [15], we used the evidence framework of MacKay to perform soft input selection for the
same direct marketing case as in Example 2.5. The automatic relevance determination
(ARD) method, an integrated feature of this framework, allowed us to assess the relative
importance of the inputs in a straightforward and integrated way.

Example 2.7

In [16], an initial approach to wrapped input selection using LS-SVM classifiers was
presented and evaluated on five publicly available real-life benchmark UCI data sets. The
results indicated that for the majority of the discussed data sets, the model complexity
could be substantially reduced.

Example 2.8

In [241], we applied a wrapped backward input selection scheme using LDA, logistic
regression and LS-SVM classifiers for predicting bankruptcy of mid-cap firms in Belgium
and the Netherlands. It was shown that the LS-SVM classifier, trained on the reduced
input set, performed very well when compared to the pruned LDA and logistic regression
classifiers.

34 Chapter 2. An Overview of Classification Techniques and Issues

Note also that feature construction methods are sometimes used as a prepro-
cessing step before the classifier is trained. These methods generally try to con-
struct new features based on the original inputs. One popular example is principal
component analysis which aims at transforming the original (possibly) correlated
inputs into a (smaller) number of uncorrelated inputs called principal components
[131]. However, this dimensionality reduction involves the loss of some informa-
tion, and care should be taken that the lost information is not crucial for the
classification task [26].

2.4 Example Benchmarking Study 1

In this section, we present an example benchmarking study involving some of the
classification techniques discussed in the previous subsections on 10 benchmark
binary classification data sets [27], of which a brief description will be included in
the next subsection.

2.4.1 Description of the Data Sets

All data sets have been obtained from the publicly accessible UCI benchmark
repository [27] at http://kdd.ics.uci.edu/. These data sets have been referred
to numerous times in the literature, which makes them very suitable for bench-
marking purposes. As a preprocessing step, all observations containing unknown
values are removed from consideration. The following binary data sets were re-
trieved from [27]: the Statlog Australian credit (acr), the Bupa liver disorders
(bld), the Statlog German credit (gcr), the Statlog heart disease (hea), the Johns
Hopkins university ionosphere (ion), the Pima Indians diabetes (pid), the sonar
(snr), the tic-tac-toe endgame (ttt), the Wisconsin breast cancer (wbc) and the
adult (adu) data set. The main characteristics of these data sets are summarized
in Table 2.1. Note that in Table 2.1, NCV stands for the number of data points

acr bld gcr hea ion pid snr ttt wbc adu

NCV 460 230 666 180 234 512 138 638 455 33000
Ntest 230 115 334 90 117 256 70 320 228 12222
N 690 345 1000 270 351 768 208 958 683 45222
nnum 6 6 7 7 33 8 60 0 9 6
ncat 8 0 13 6 0 0 0 9 0 8
n 14 6 20 13 33 8 60 9 9 14

Table 2.1: Characteristics of the binary classification UCI data sets.

used in the cross-validation based tuning procedure, Ntest for the number of ob-

2.4. Example Benchmarking Study 1 35

servations in the test set (see next subsection) and N for the total data set size.
The number of numerical and categorical attributes is denoted by nnum and ncat
respectively, n is the total number of attributes.

2.4.2 Hyperparameter Selection for the SVM Classifiers

Different techniques exist for tuning the hyperparameters related to the regular-
ization constant and the parameter of the kernel function of the LS-SVM and SVM
classifier. Among the available tuning methods we find minimization of the Vapnik-
Chervonenkis (VC) dimension [26, 216, 229, 250, 252], the use of cross-validation
methods, bootstrapping techniques, Bayesian inference [26, 142, 154, 243, 244],
etc. Here, we will select the regularization and kernel parameters of both the
LS-SVM and SVM classifier using a simple 10-fold cross-validation procedure.

In the case of an RBF kernel, the hyperparameter γ, the kernel parameter
σ and the test set performance of the LS-SVM classifier are estimated using the
following steps:

1. Set aside 2/3 of the data for the training/validation set and the remaining
1/3 for testing.

2. Starting from i = 0, perform 10-fold cross-validation on the training/validation
data for each (σ, γ) combination from the initial candidate tuning sets6

Σ0 = {0.5, 5, 10, 15, 25, 50, 100, 250, 500} · √n and Γ0 = {0.01, 0.05, 0.1, 0.5,
1, 5, 10, 50, 100, 500, 1000}.

3. Choose optimal (σ, γ) from the tuning sets Σi and Γi by looking at the best
cross-validation performance for each (σ, γ) combination.

4. If i = imax, go to step 5; else i := i + 1, construct a locally refined grid
Σi × Γi around the optimal hyperparameters (σ, γ) and go to step 3.

5. Construct the LS-SVM classifier using the total training/validation set for
the optimal choice of the tuned hyperparameters (σ, γ).

6. Assess the test set accuracy by means of the independent test set.

In this benchmarking study, imax was typically set to 3. This involves a fine-tuned
selection of both the σ and γ parameters. It should be remarked however that the
refining of the grid is not always necessary as the 10-fold (CV10) cross-validation
performance typically has a flat maximum, as can be seen from Figure 2.15 for the
ion data set. The function depicted in Figure 2.15 is rather flat near the maximum.
The CV10 accuracy is more sensitive to the kernel or bandwidth parameter σ

6The square root
√
n of the number of inputs n is considered in the grid Σ (Step 2) since

||x− xi||22 in the RBF kernel is proportional to n.

36 Chapter 2. An Overview of Classification Techniques and Issues

10
0

10
1

10
2

10
3

10
0

10
2

10
4

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

PSfrag replacements

σγ

C
V

1
0

a
c
c
u
r
a
c
y

Figure 2.15: Cross-validation (CV10) classification accuracy on the ion data set
as a function of the regularization parameter γ and kernel parameter σ for an
LS-SVM classifier with RBF kernel.

selection [188] than to the choice of the regularization parameter for the ion data
set.

For the polynomial kernel functions the hyperparameters γ and c were tuned
by a similar procedure, while the γ parameter of the linear kernel was selected
from a refined set Γ based upon the cross-validation performance.

2.4.3 Experimental Setup

We included the following techniques: the LS-SVM classifier with RBF, linear
and polynomial kernel, the SVM classifier with linear and RBF kernel, the C4.5
decision tree induction algorithm, linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA), Holte’s one rule classifier (oneR), logistic regres-
sion (logit), k-nearest neighbor (KNN), and naive Bayes. Although the study
could have included still other classification techniques, we believe we consider
the most important ones, each originating from different machine learning back-
grounds. Note that the oneR classifier is basically a 1-level decision tree using
only 1 attribute to classify an observation (see [122] for more details). For the LS-
SVM classifier, we will include both the performance of the usual LS-SVM targets
{−1,+1} and the performance of Regularized Kernel Fisher Discriminant Analysis
(LS-SVMF) targets {−N/N−,+N/N+}. All given n inputs are normalized to zero
mean and unit variance in the following way[26]:

xnormi =
xi − xi
si

, (2.55)

2.4. Example Benchmarking Study 1 37

whereby xi represents the mean of variable xi and si its sample standard deviation.

The LS-SVMlab Matlab toolbox [177] is used to train and evaluate the LS-SVM
classifiers whereas the Matlab SVM toolbox [43] with SMO solver [180] is used to
train and evaluate the Vapnik SVM classifier. The C4.5, KNN1, KNN10, naive
Bayes and oneR algorithms are implemented using the Weka workbench [263],
while the Discriminant Analysis Toolbox (M. Kiefte) for Matlab is applied for
LDA, QDA and logit. All experiments are carried out on Sun Ultra5 Workstations
and on Pentium II and III PCs.

The oneR, LDA, QDA, logit, NBk and NBn require no parameter tuning. For
C4.5, we use the default confidence level of 25% for pruning, which is the value that
is commonly used in the machine learning literature. We also experimented with
other pruning levels on some of the data sets, but found no significant performance
increases. For KNN we use both 1 (KNN1) and 10 (KNN10) nearest neighbors.
We use both standard naive Bayes with the normal approximation (NBn) and the
kernel approximation (NBk) for continuous attributes. The default classifier or
majority rule (Maj. Rule) is also included as a baseline in the comparison tables.
All comparisons are made on the same randomizations. For another comparison
study among 22 decision tree, 9 statistical and 2 neural network algorithms, we
refer to [151].

The comparison is performed on an out-of-sample test set consisting of 1/3
of the data. The first 2/3 of each data set is reserved for training and/or cross-
validation. For each algorithm, we report the average test set performance and
sample standard deviation on 10 randomizations of each data set (see Table 2.4).
The best average test set performance is underlined and denoted in bold face for
each data set. We then use a paired t-test to test the performance differences:

t =
d
sd√
10

with 9 degrees of freedom, (2.56)

whereby d represents the mean performance difference between two classifiers and
sd the corresponding standard deviation. Performances that are not significantly
different at the 5% level from the top performance with respect to a one-tailed
paired t-test are tabulated in bold face. Statistically significant underperformances
at the 1% level are emphasized in italics. Performances significantly different at
the 5% level but not a the 1% level are reported in normal script. Since the ob-
servations of the randomizations are not independent [63], we remark that this
standard t-test is used as a common heuristic to test the performance differences.
Ranks are also assigned to each algorithm starting from 1 for the best average
performance and ending with 18 for the algorithm with worst performance. Av-
eraging over all data sets, the Average Accuracy (AA) and Average Rank (AR)
are reported for each algorithm [151]. A Wilcoxon signed rank test of equality
of medians is used on both AA and AR to check whether the performance of an
algorithm is significantly different from the algorithm with the highest accuracy

38 Chapter 2. An Overview of Classification Techniques and Issues

[213]. A Probability of a Sign Test (PST) is also reported comparing each algo-
rithm to the algorithm with best accuracy [213]. The results of these significance
tests on the average data set performances are denoted in the same way as the
performances on each individual data set.

2.4.4 Results

LS-SVM acr bld gcr hea ion pid snr ttt wbc adu

NCV 460 230 666 180 234 512 138 638 455 33000
n 14 6 20 13 33 8 60 9 9 14
RBF 0.86 0.72 0.76 0.83 0.96 0.78 0.77 0.99 0.97 0.85

Lin 0.86 0.67 0.74 0.83 0.87 0.78 0.78 0.66 0.96 0.82
Pol d = 2 0.86 0.72 0.76 0.83 0.91 0.78 0.82 0.98 0.97 0.84
Pol d = 3 0.86 0.73 0.76 0.83 0.91 0.78 0.82 0.99 0.97 0.84
Pol d = 4 0.86 0.72 0.77 0.83 0.78 0.78 0.81 1.00 0.97 0.84
Pol d = 5 0.87 0.72 0.76 0.83 0.78 0.78 0.81 1.00 0.97 0.84
Pol d = 6 0.86 0.73 0.77 0.83 0.78 0.78 0.81 1.00 0.97 0.84
Pol d = 7 0.86 0.72 0.77 0.83 0.78 0.78 0.81 1.00 0.97 0.84
Pol d = 8 0.86 0.73 0.76 0.83 0.78 0.78 0.81 1.00 0.97 0.84
Pol d = 9 0.86 0.73 0.77 0.83 0.78 0.78 0.81 0.99 0.97 0.84
Pol d = 10 0.86 0.71 0.77 0.83 0.91 0.78 0.81 1.00 0.97 0.84

Table 2.2: Validation set performance of LS-SVMs on 10 data sets, the best per-
formances on each data set are underlined and denoted in bold face. Performances
are represented as percentages.

Tables 2.2 and 2.3 depict the validation and test set performances of the LS-
SVM classifiers using the various kernel types on the 10 data sets. The corre-
sponding training set performances are given in Table A.1 of the Appendix. The
best validation and test set performances are underlined and denoted in bold face.
These experimental results indicate that the RBF kernel yields the best validation
and test set performance, while also polynomial kernels yield good performances.
These results confirm the results found in [17]. Note that we also conducted the
analyses using non-scaled polynomial kernels, i.e., with c = 1. For this scaling pa-
rameter, LS-SVMs with polynomial kernels of degrees d = 2 and d = 10 yielded on
all data sets average test set performances of 84.3% and 65.9%, respectively. Com-
paring this with the average test set performance of 85.6% and 85.5% (see Table
2.3 and average the rows corresponding to the polynomial kernels) obtained when
using scaling, this clearly motivates the use of bandwidth or kernel parameters.
This is especially important for polynomial kernels with degree d ≥ 5.

Table A.2 of the Appendix presents the optimized values of the regularization
parameter γ, and the kernel parameters σ, and c of the LS-SVM classifier with
linear, RBF and polynomial kernel. The flat maximum pattern of the CV10 clas-

2.4. Example Benchmarking Study 1 39

LS-SVM acr bld gcr hea ion pid snr ttt wbc adu

Ntest 230 115 334 90 117 256 70 320 228 12222
n 14 6 20 13 33 8 60 9 9 14
RBF 0.90 0.71 0.77 0.87 0.97 0.77 0.76 0.99 0.96 0.84

Lin 0.90 0.72 0.77 0.86 0.88 0.77 0.74 0.67 0.96 0.82
Pol d = 2 0.89 0.71 0.76 0.84 0.93 0.78 0.86 0.99 0.96 0.84
Pol d = 3 0.90 0.71 0.77 0.84 0.93 0.77 0.83 0.99 0.96 0.85
Pol d = 4 0.89 0.70 0.76 0.86 0.91 0.78 0.83 1.00 0.96 0.84
Pol d = 5 0.90 0.72 0.75 0.87 0.88 0.76 0.83 1.00 0.96 0.84
Pol d = 6 0.89 0.71 0.76 0.88 0.91 0.77 0.84 1.00 0.96 0.85
Pol d = 7 0.89 0.70 0.75 0.87 0.91 0.77 0.79 1.00 0.96 0.85
Pol d = 8 0.88 0.70 0.76 0.86 0.91 0.76 0.83 1.00 0.96 0.85
Pol d = 9 0.88 0.70 0.76 0.86 0.90 0.77 0.80 0.99 0.96 0.84
Pol d = 10 0.89 0.71 0.75 0.88 0.94 0.78 0.80 1.00 0.96 0.84

Table 2.3: Test set performance of LS-SVMs on 10 binary data sets, the best per-
formances on each data set are underlined and denoted in bold face. Performances
are represented as percentages.

sification accuracy illustrated in Figure 2.15 for the ion data set was commonly
encountered among all evaluated data sets.

The regularization parameter C and kernel parameter σ of the SVM classifiers
with linear and RBF kernels were selected in a similar way as for the LS-SVM
classifier using the 10-fold cross-validation procedure outlined in section 2.4.2.
The optimal hyperparameters of the SVM classifiers are reported in Table A.3 of
the Appendix.

The optimized regularization and kernel parameters are then used to assess
the test set performance of the SVM, LS-SVM and LS-SVMF classifiers on 10
randomizations of each data set: for each randomization the first 2/3 of the data
are used for training, while the remaining 1/3 is set aside for testing. In the same
way, the test set performances of the other classification techniques are assessed.
The same randomizations are used in order to make a fair comparison between
all classifiers possible. Both sample mean and sample standard deviation of the
performance on the different data sets are reported in Table 2.4 using the bold,
normal and emphasized script to enhance the visual interpretation as explained
above. Averaging over all data sets, the mean performance and rank and the
probability of different medians with respect to the best algorithm are tabulated
in the last 3 columns of the Table.

The LS-SVM classifier with Radial Basis Function kernel (RBF LS-SVM)
achieves the best average test set performance on 3 of the 10 benchmark data
sets, while its accuracy is not significantly worse than the best algorithm on 3
other data sets. LS-SVM classifiers with polynomial and linear kernel yield the

40 Chapter 2. An Overview of Classification Techniques and Issues

best performance on two and one data set(s), respectively. Also the RBF SVM,
KNN1, NBk and C4.5 classifier achieve the best performance on one data set each.
A comparison of the accuracy achieved by the non-linear polynomial and RBF
kernel with the accuracy of the linear kernel illustrates that most data sets are
only weakly non-linear. The LS-SVM formulation with targets {−1,+1} yields a
better performance than the LS-SVMF regression formulation related to regular-
ized kernel Fisher’s discriminant with targets {−N/N−,+N/N+}, although not all
tests report a significant difference. Noticing that the LS-SVM with linear kernel
and without regularization (γ →∞) corresponds to the LDA classifier, we also re-
mark that a comparison of both accuracies indicates that the use of regularization
slightly improves the generalization behavior.

Considering the Average Accuracy (AA) and Average Ranking (AR) over all
data sets, the RBF SVM gets the best average accuracy and the RBF LS-SVM the
best average rank. There is no significant difference between the performance of
both classifiers. The average performance of the Pol LS-SVM and Pol LS-SVMF

classifiers is not significantly different with respect to the best algorithms. The
performances of many other advanced SVM algorithms are in line with the above
results [32, 162, 200]. The significance tests on the average performances of the
other classifiers do not always yield the same results. Generally speaking, the
performance of the Lin LS-SVM, Lin SVM, Logit, NBk and KNN1 classifiers is
not significantly different from the best performance at the 1% level. Also the
performances of LS-SVMs with Fisher’s discriminant targets (LS-SVMF) are not
significantly different at the 1% level.

In summary, one may conclude that the SVM and LS-SVM formulations achieve
very good test set performances compared to the other reference classification al-
gorithms. However, it has to be noted that simple, linear classifiers, e.g. logistic
regression, also achieve very good classification accuracy which indicates that most
of the data sets used are only weakly non-linear.

Note that in [242], this study was also extended to a multiclass setting where we
considered 10 UCI multiclass data sets and used different output coding schemes
for the (LS-)SVM classifiers. We have included the results of this study in Table
B.2 of the Appendix.

2.5 Benchmarking Study 2

In a second benchmarking study, we will consider two highly non-linear artificial
classification problems. The first problem concerns a checkerboard where the
aim is to distinguish the white squares from the black squares based on their
location. The second problem is the well-known 2-spiral problem which consists of
two intertwined spirals [227]. Both classification problems are depicted in Figure
2.16. The data set for the checkerboard has 1000 observations whereas the 2-

2
.5
.
B
en
ch
m
a
rk
in
g
S
tu
d
y
2

41

acr bld gcr hea ion pid snr ttt wbc adu AA AR PST

Ntest 230 115 334 90 117 256 70 320 228 12222

n 14 6 20 13 33 8 60 9 9 14

RBF LS-SVM 87.0(2.1) 70.2(4.1) 76.3(1.4) 84.7(4.8) 96.0(2.1) 76.8(1.7) 73.1(4.2) 99.0(0.3) 96.4(1.0) 84.7(0.3) 84.4 3.5 0.727

RBF LS-SVMF 86.4(1.9) 65.1(2.9) 70.8(2.4) 83.2(5.0) 93.4(2.7) 72.9(2.0) 73.6(4.6) 97.9(0.7) 96.8(0.7) 77.6(1.3) 81.8 8.8 0.109

Lin LS-SVM 86.8(2.2) 65.6(3.2) 75.4(2.3) 84.9(4.5) 87.9(2.0) 76.8(1.8) 72.6(3.7) 66.8(3.9) 95.8(1.0) 81.8(0.3) 79.4 7.7 0.109

Lin LS-SVMF 86.5(2.1) 61.8(3.3) 68.6(2.3) 82.8(4.4) 85.0(3.5) 73.1(1.7) 73.3(3.4) 57.6(1.9) 96.9(0.7) 71.3(0.3) 75.7 12.1 0.109

Pol LS-SVM 86.5(2.2) 70.4(3.7) 76.3(1.4) 83.7(3.9) 91.0(2.5) 77.0(1.8) 76.9(4.7) 99.5(0.5) 96.4(0.9) 84.6(0.3) 84.2 4.1 0.727

Pol LS-SVMF 86.6(2.2) 65.3(2.9) 70.3(2.3) 82.4(4.6) 91.7(2.6) 73.0(1.8) 77.3(2.6) 98.1(0.8) 96.9(0.7) 77.9(0.2) 82.0 8.2 0.344

RBF SVM 86.3(1.8) 70.4(3.2) 75.9(1.4) 84.7(4.8) 95.4(1.7) 77.3(2.2) 75.0(6.6) 98.6(0.5) 96.4(1.0) 84.4(0.3) 84.4 4.0 1.000

Lin SVM 86.7(2.4) 67.7(2.6) 75.4(1.7) 83.2(4.2) 87.1(3.4) 77.0(2.4) 74.1(4.2) 66.2(3.6) 96.3(1.0) 83.9(0.2) 79.8 7.5 0.021

LDA 85.9(2.2) 65.4(3.2) 75.9(2.0) 83.9(4.3) 87.1(2.3) 76.7(2.0) 67.9(4.9) 68.0(3.0) 95.6(1.1) 82.2(0.3) 78.9 9.6 0.004

QDA 80.1(1.9) 62.2(3.6) 72.5(1.4) 78.4(4.0) 90.6(2.2) 74.2(3.3) 53.6(7.4) 75.1(4.0) 94.5(0.6) 80.7(0.3) 76.2 12.6 0.002

Logit 86.8(2.4) 66.3(3.1) 76.3(2.1) 82.9(4.0) 86.2(3.5) 77.2(1.8) 68.4(5.2) 68.3(2.9) 96.1(1.0) 83.7(0.2) 79.2 7.8 0.109

C4.5 85.5(2.1) 63.1(3.8) 71.4(2.0) 78.0(4.2) 90.6(2.2) 73.5(3.0) 72.1(2.5) 84.2(1.6) 94.7(1.0) 85.6(0.3) 79.9 10.2 0.021

oneR 85.4(2.1) 56.3(4.4) 66.0(3.0) 71.7(3.6) 83.6(4.8) 71.3(2.7) 62.6(5.5) 70.7(1.5) 91.8(1.4) 80.4(0.3) 74.0 15.5 0.002

KNN1 81.1(1.9) 61.3(6.2) 69.3(2.6) 74.3(4.2) 87.2(2.8) 69.6(2.4) 77.7(4.4) 82.3(3.3) 95.3(1.1) 78.9(0.2) 77.7 12.5 0.021

KNN10 86.4(1.3) 60.5(4.4) 72.6(1.7) 80.0(4.3) 85.9(2.5) 73.6(2.4) 69.4(4.3) 94.8(2.0) 96.4(1.2) 82.7(0.3) 80.2 10.4 0.039

NBk 81.4(1.9) 63.7(4.5) 74.7(2.1) 83.9(4.5) 92.1(2.5) 75.5(1.7) 71.6(3.5) 71.7(3.1) 97.1(0.9) 84.8(0.2) 79.7 7.3 0.109

NBn 76.9(1.7) 56.0(6.9) 74.6(2.8) 83.8(4.5) 82.8(3.8) 75.1(2.1) 66.6(3.2) 71.7(3.1) 95.5(0.5) 82.7(0.2) 76.6 12.3 0.002

Maj. Rule 56.2(2.0) 56.5(3.1) 69.7(2.3) 56.3(3.8) 64.4(2.9) 66.8(2.1) 54.4(4.7) 66.2(3.6) 66.2(2.4) 75.3(0.3) 63.2 17.1 0.002

Table 2.4: Comparison of the 10 times randomized test set performance of all classifiers. Best performances are underlined
and denoted in bold face, performances not significantly different at the 5% level are denoted in bold face, performances
significantly different at the 1% level are emphasized in italics.

42 Chapter 2. An Overview of Classification Techniques and Issues

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

PSfrag replacements

x1

x
2

(a) checkerboard

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

PSfrag replacements

x1

x
2

(b) 2-spiral

Figure 2.16: The checkerboard and 2-spiral classification problem.

spiral data set consists of 194 observations (97 observations for each spiral). We
trained an LS-SVM classifier with σ = 0.5 and γ = 0.5 for both data sets and
compared its classification accuracy with LDA, QDA and logit (see Table 2.5).
As can be seen from Table 2.5, the LS-SVM classifier clearly outperforms the

Checkerboard 2-Spiral

LDA 53.70 50.52
QDA 47.30 50.52
logit 53.70 50.52
LS-SVM 96.70 98.97

Table 2.5: LDA, QDA, logit and LS-SVM classification accuracy on the checker-
board and 2-spiral classification problem.

other classifiers. This is due to the fact that the logistic regression and LDA
classifier assume linear decision boundaries whereas the QDA classifier models
a quadratic decision boundary. Since both artificial problems are highly non-
linear, the modeling capacity of these classifiers is to limited to achieve a good
classification accuracy. On the other hand, the kernel trick allows the LS-SVM
classifier to model highly complex, non-linear decision boundaries which results in
an excellent classification accuracy for both data sets.

We also generated 40000 extra test points for the checkerboard data set and
4000 extra test points for the 2-spiral data set. The classifications made by the
LS-SVM classifier are visualized in Figure 2.17. The figure clearly indicates that
the LS-SVM classifier has a very good generalization ability on both data sets.

2.6. Conclusions and Limitations of Benchmarking Studies 1 and 2 43

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

PSfrag replacements

x1

x
2

(a) checkerboard

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

PSfrag replacements

x1

x
2

(b) 2-spiral

Figure 2.17: LS-SVM generalisation behaviour on the checkerboard and 2-spiral
classification problem.

2.6 Conclusions and Limitations of Benchmark-

ing Studies 1 and 2

Benchmarking study 2 clearly illustrated the superiority of LS-SVM classifiers for
two artificial, highly non-linear classification problems. However, when looking
at Table 2.4 of benchmarking study 1, the performance differences between the
non-linear classifiers (LS-SVM and SVM) and simple classifiers e.g. LDA and
logit were not that pronounced. The data sets considered in benchmarking study
1 are primarily real-life data sets. This may indicate that patterns such as the
checkerboard and 2-spiral pattern depicted in Figure 2.16 are rarely encountered
in real-life data sets. Furthermore, it can be argued that most real-life classifica-
tion data sets can be well separated using simple techniques although non-linear
classifiers such as SVMs and LS-SVMs can sometimes provide additional marginal
performance benefits. Note that these small performance increases may be very
important in a data mining context as the following example illustrates [15, 239].

Example 2.9

Suppose that a mail-order company decides to mail to 75% of its current mailing list of 5
million customers, i.e. 3, 750, 000 mailings are sent out. Suppose that the overall response
rate when mailing to all of their current customers is 10% during a particular mailing
period, i.e. if everyone would be mailed, 500, 000 orders would be placed. Suppose further
that the average contribution per customer amounts to 100 Euro, which is the typical
real-life situation of a large mail-order company. Table 2.6 compares the economics of
several alternative response models each developed using other classification techniques.
When no model is available, we can expect to obtain 75% of all potential responses (i.e.
0.75× 500, 000 = 375, 000 responses) when 75% of 5 million people are mailed (i.e., 3.75
million mailings are sent out). The ideal model (at the specific mailing depth) is able to

44 Chapter 2. An Overview of Classification Techniques and Issues

Type of Mailing Customers Mailings Responses Average Total Additional

Model Depth (million) sent out (million) Cont. Cont. Cont.

Null Model 75.00 % 5.00 3.75 375,000 100.00 37.50 0.00

Ideal Model 75.00 % 5.00 3.75 500,000 100.00 50.00 12.50

90 % model 75.00 % 5.00 3.75 450,000 100.00 45.00 7.50

91 % model 75.00 % 5.00 3.75 455,000 100.00 45.50 8.00

Table 2.6: Economics resulting from performance differences among response mod-
els.

select the people from the mailing list in such a way that the 500, 000 potential customers
all receive a mailing, i.e. even though 25% of the mailing list is not mailed, not a single
order is lost. Suppose further that the current response model used by the company,
by mailing to 75% of their mailing list, allows to obtain 90% of the responses, i.e. even
though 1, 250, 000 people on the list do not receive a mailing, only 10% of the 500, 000
potential customers are excluded. This will result in 450, 000 orders, which represents
a substantial improvement over the ’null model’ situation. If a better response model
can be built, which achieves 91% of the responses instead of 90%, the contribution of
this change will directly increase the contribution over the null model from 7.50 million
Euro to 8 million Euro, i.e. by 500, 000 Euro (1% of 10% of 5 million customers ×100
Euro average contribution). Given a tendency of rising mailing costs and increasing
competition, we can easily see an increasing importance for developing accurate response
models [113]. This example clearly illustrates that an increase of 1% response rate of a
direct mailing campaign can result in substantial profit gains.

In benchmarking study 1, we used a one-tailed t-test to test the difference in
classification accuracy of two classifiers. However, Dietterich [63] has shown that
this test may exhibit somewhat elevated probability of Type I error which is the
probability of incorrectly detecting a performance difference when no difference
exists.

Another important issue is that both studies used the classification accuracy,
measured as the percentage correctly classified (PCC) observations, as the per-
formance measure of interest. Although this measure is undoubtedly the most
commonly used, it may not be the most appropriate performance criterion in a
number of cases. It tacitly assumes equal misclassification costs for false positive
and false negative predictions. This assumption is problematic, since for most
real-world problems (e.g. credit scoring, fraud detection) one type of classification
error may be much more expensive than the other. Another implicit assumption
of the use of PCC as an evaluation metric is that the class distribution (class
priors) among the observations is presumed constant over time and relatively bal-
anced [185]. For example, when confronted with a situation characterized by a
very skewed class distribution in which faulty predictions for the underrepresented
class are very costly, a model evaluated on PCC alone may always predict the
most common class and, in terms of PCC, provide a relatively high performance.

2.7. The Area Under the Receiver Operating Characteristic Curve 45

Thus, using PCC alone often proves to be inadequate, since class distributions and
misclassification costs are rarely uniform. However, taking into account class dis-
tributions and misclassification costs proves to be quite hard, since in practice they
can rarely be specified precisely and are often subject to change [31, 81, 109]. In
spite of the above, comparisons based on classification accuracy often remain use-
ful because they are indicative of a broader notion of good performance [185]. In
the following section, we discuss the use of the Area under the Receiver Operating
Characteristic Curve as an additional performance measure.

2.7 The Area Under the Receiver Operating Char-

acteristic Curve

Class-wise decomposition of the classification of cases yields a confusion matrix as
specified in Table 2.7. The following performance metrics can readily be distilled

Actual

Predicted + -

+ True Positive (TP) False Positive (FP)

- False Negative (FN) True Negative (TN)

Table 2.7: The confusion matrix for binary classification.

from Table 2.7

sensitivity =
TP

TP + FN
(2.57)

specificity =
TN

FP + TN
. (2.58)

The sensitivity (specificity) measures the proportion of positive (negative) exam-
ples which are predicted to be positive (negative). Using the notation of Table
2.7, we may now formulate the overall accuracy as follows

PCC =
TP + TN

TP + FP + TN+ FN
. (2.59)

Note that sensitivity, specificity and PCC vary together as the threshold on a clas-
sifier’s continuous output is varied between its extremes within the interval [0, 1].
The receiver operating characteristic curve (ROC) is a 2-dimensional graphical
illustration of the sensitivity (’true alarms’) on the Y-axis versus (1-specificity)
(’false alarms’) on the X-axis for various values of the classification threshold. It
basically illustrates the behavior of a classifier without regard to class distribution
or error cost, so it effectively decouples classification performance from these fac-
tors [72, 109, 230, 231]. Translated to a credit scoring context, the X-axis depicts

46 Chapter 2. An Overview of Classification Techniques and Issues

the percentage of bads predicted to be good (percentage of goods predicted to
be bad) whereas the Y-axis gives the percentage of goods predicted to be good
(percentage of bads predicted to be bad).

Figure 2.18 provides an example of several ROC curves. Each ROC curve
passes through the points (0,0) and (1,1). The former represents the situation
whereby the classification threshold exceeds the highest output posterior proba-
bility value (meaning all instances are classified in class 0). In the latter case, the
classification threshold is lower than the lowest posterior probability value (mean-
ing all instances are classified in class 1). A straight line through (0,0) and (1,1)
represents a classifier found by randomly guessing the class and thus with poor dis-
criminative power, since the sensitivity always equals (1-specificity) for all possible
values of the classification threshold (curve A). It is to be considered as a bench-
mark for the predictive accuracy of other classifiers. The more the ROC curve
approaches the (0,1) point, the better the classifier will discriminate (e.g. curve
D dominates curves A, B and C). ROC curves of different classifiers may however
intersect making a performance comparison less obvious (e.g. curves B and C). To
overcome this problem, one often calculates the area under the receiver operating
characteristic curve (AUC). The AUC then provides a simple figure-of-merit for
the performance of the constructed classifier. An intuitive interpretation of the
AUC is that it provides an estimate of the probability that a randomly chosen
instance of class 1 (positive instance) is correctly rated (or ranked) higher than a
randomly selected instance of class 0 (negative instance). This is equivalent to the
Wilcoxon test of ranks [110]. Note that since the area under the diagonal is 0.5, a
good classifier should have an AUC larger than 0.5. Since the AUC represents the
ability of a classifier to produce good relative instance rankings, it is important to
remark that in order to compute the AUC, a classifier need not produce accurate,
well calibrated probability estimates. Instead, it need only produce relative accu-
rate scores discriminating the positive and negative instances [80]. Many methods
have been suggested to compute the AUC [64, 111]. We will use the well-known
trapezoidal rule which calculates the AUC as the sum of the surfaces of a number
of adjacent trapezia. It has to be noted however that this method systematically
underestimates the true AUC [110]. Although the AUC was originally proposed
in the context of binary classification, extensions for multi-class classification have
also been recently proposed in the literature [109].

In what follows, we consistently multiply AUC values by a factor of 100 to give
a number that is similar to PCC, with 50 indicating random and 100 indicating
perfect classification.

2.8. Computing the AUC 47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

A

B

C

D

1-specificity

se
n
si
ti
v
it
y

Figure 2.18: The receiver operating characteristic curve (ROC).

2.8 Computing the AUC

For logistic regression, linear and quadratic discriminant analysis, and the naive
Bayes classifier the calculation of the AUC poses no problems since each of these
classifiers is able to output probabilities of the form p(y|x).

For decision trees and rules, one commonly adopts the confidence of the rule
or leave as the class probability estimate. The confidence is defined as TP

TP+FP
with TP (FP) the true (false) positives classified by the leave or rule. However, it
has to be noted that using the confidence may provide poor probability estimates,
especially for rule sets where the rules are no longer mutually exclusive and mul-
tiple rules may fire for the same instance. In [80], several voting strategies were
compared to compute the AUC of rule sets with overlapping rules. It was shown
that for C4.5rules, the strategy of simply using the confidence of the first matching
rule provides satisfactorily results. One possible explanation for this is that even
after pruning, the number of conflicting rules remains limited. Note that these
probability estimates may be further improved by a smoothing operation such as
a Laplace correction [184].

For the k-nearest neighbor classifier, the class probability estimate is obtained
as the number of votes for the class in question divided by k.

When using logistic transfer functions in the output layer of an MLP, the
outputs can be interpreted as class probabilities and the calculation of the AUC

48 Chapter 2. An Overview of Classification Techniques and Issues

becomes straightforward.

For the SVM and LS-SVM classifiers, we use the output of the classifiers before
applying the sign operator to compute the AUCs (see Equation 2.54). Remember,
in order to compute the AUC, a classifier need not produce accurate probability
estimates, but only relative accurate scores discriminating the positive and nega-
tive instances (see above). Note however that methods have been proposed in the
literature to compute class probability estimates for SVMs [181].

2.9 Test Statistics to Compare the PCC and AUC

Statistically comparing the PCC and AUC values of two classifiers depends on
the way both measures have been computed. E.g. when a cross-validation setup
was used, one naturally obtains both the mean and standard deviation of the
performance criteria and a paired t-test might be used to compare the performance.
However, in [63] it was shown that in a cross-validation context, the paired t-test
exhibits a somewhat elevated type I error. Since we will use large data sets in the
following chapters, we here focus on how to compare the PCC and AUC values
based on a training set/test set setup.

To compare the PCC values of two classifiers on the same test set, one com-
monly adopts the McNemar test [77, 213]. Suppose we have two classifiers, C1 and
C2, and we represent their misclassifications as the following contingency table:

Number of examples misclassified Number of examples misclassified
by both C1 and C2 (a) by C1 but not by C2 (b)
Number of examples misclassified Number of examples misclassified
by C2 but not by C1 (c) by neither C1 nor C2 (d)

Table 2.8: Contingency table for McNemar test.

When conducting the McNemar test, only cells b and c are of interest since
they represent the number of misclassifications by C1 but not by C2 and vice versa.
Under the null hypothesis, both classifiers have the same error rate and b should
equal c. However, when classifier C1 has a higher error rate than classifier C2, b
should be higher than c. When using the notation πb =

b
b+c and πc =

c
b+c the null

and alternative (two tailed) test can be stated as follows [213]:

H0 : πb = πc
H1 : πb 6= πc.

(2.60)

The test statistic for the McNemar test is based on the chi-squared distribution

2.9. Test Statistics to Compare the PCC and AUC 49

and is computed as follows:

χ2 =
(b− c)2

b+ c
, (2.61)

with 1 degree of freedom. Note that since the McNemar test employs a continu-
ous distribution to approximate a discrete probability distribution, some authors
recommend a correction for continuity as follows

χ2 =
(|b− c| − 1)2

b+ c
. (2.62)

In [63], it was shown that this test has an acceptable Type I error when used in
combination with a training set/test set setup.

Multiple tests have been devised to compare AUC values derived from the
same test observations. Hanley and McNeil [111] developed a parametric approach
which uses a z-statistic based on an approximation procedure that used the Pearson
correlation or Kendall tau to estimate the correlation of the two AUCs. DeLong,
DeLong and Clarke-Pearson [59] suggested a non-parametric approach whereby
the covariance matrix is estimated using the theory on generalized U-statistics.
After some mathematical calculus, they arrived at the following test statistic:

(θ̂ − θ)cT [cS cT]−1c(θ̂ − θ)T (2.63)

which has a chi-square distribution with degrees of freedom equal to the rank of
cS cT with θ̂ the vector of the AUC estimates, S the estimated covariance matrix
and c a vector of coefficients such that cθT represents the desired contrast (see
[59] for more details). We will use this test in the remainder of this text.

50 Chapter 2. An Overview of Classification Techniques and Issues

2.10 Conclusions

In this chapter, we started with discussing a selection of popular classification tech-
niques originating from several backgrounds such as statistics, machine learning
and artificial intelligence. We hereby primarily focussed on the basic theoretical
underpinnings and aspects relating to the practical implementation of the various
classification algorithms. The following techniques were discussed in detail: lo-
gistic regression, linear and quadratic discriminant analysis, linear programming,
Bayesian networks, C4.5 decision trees and rules, k-nearest neighbor classifiers,
neural networks, support vector machines and the recently suggested least squares
support vector machine classifiers.

Following the discussion of the classification techniques, we elaborated on ways
to split up the data set in order to assess the predictive performance of a classifier.
More specifically, we explained the difference between training set and test set,
and discussed the well-known k-fold cross-validation procedure in more detail.
This was followed by a bird’s eye overview on the topic of input selection where a
distinction was made between filter methods and wrapper methods. The former
basically operate independent of the classification technique whereas the latter are
integrated with the classifier using e.g. sensitivity heuristics.

Next, we presented a first benchmarking study which investigated the classifi-
cation accuracy of the previously discussed classification techniques on 10 publicly
available, real-life data sets which have been widely used in the literature. It was
concluded that the SVM and LS-SVM classifiers achieved a very good performance
although simple classifiers, e.g. logistic regression, also obtained a good classifica-
tion accuracy, which indicates that the data sets used were only weakly non-linear.
In a second benchmarking study, we considered the checkerboard and 2-spiral ar-
tificial classification problems which are both very non-linear. It was found that
the LS-SVM classifier clearly outperformed the LDA, QDA and logit classifiers by
far. When comparing the results of both studies, it was concluded that the perfor-
mance differences between the non-linear classifiers (e.g. LS-SVM and SVM) and
the simple (linear) classifiers (e.g. LDA and logit) were more pronounced in study
2 than in study 1. Hence, our conclusion was that most real-life classification data
sets are very good separable using simple classification techniques although non-
linear classifiers such as SVMs and LS-SVMs may provide additional performance
benefits which may be very important in a data mining context.

One important criticism concerning both benchmarking studies was that they
only looked at the classification accuracy of the classification algorithms. It was
then argued that misclassification costs and class distributions can also have an
impact on the performance. However, since both are hard to specify correctly in
advance, other performance measures are needed. We then arrived at the area
under the receiver operating characteristic curve as an additional performance
metric which measures the performance of a classifier independent of misclassifi-

2.10. Conclusions 51

cation costs or class distribution. We also discussed how to compute the AUC for
the classifiers discussed earlier.

Since knowledge discovery and data mining usually involve the use of large data
sets, one commonly adopts a training set/test set procedure to assess the predictive
performance of the classifiers. However, when using a single test set, no variance
of the performance measure is obtained and appropriate test statistics are required
to compare both the classification accuracy and the AUC. We then discussed the
McNemar test to compare the classification accuracy and the non-parametric test
of DeLong, DeLong and Clarke-Pearson to compare the AUCs.

In the next chapter, we will again evaluate the performance of the classifiers
discussed in this chapter on 8 credit scoring data sets, but this time using both the
classification accuracy and the AUC as performance measures and the appropriate
test statistics to compare them.

52 Chapter 2. An Overview of Classification Techniques and Issues

Chapter 3

Building Scorecards for

Credit Scoring

In this chapter, we will study the topic of building scorecards for credit scoring using
the classification techniques discussed in the previous chapter1,2. We will start by
discussing the basic problem statement and issues related to credit scoring. It is
important to note that we hereby only consider consumer credit scoring instead of
corporate credit scoring and bankruptcy prediction which have also deserved a lot
of attention in the literature. In a next section, we elaborate on the topic of reject
inference which aims at appropriately dealing with the applicants for which credit
was denied in the past. This is followed by a literature overview on the use of
machine learning techniques for credit scoring.

In the empirical part of this chapter, we report on the application of the classi-
fication techniques discussed in chapter 2 on 8 credit scoring data sets originating
from major Benelux (Belgium, The Netherlands and Luxembourg) and U.K. fi-
nancial institutions. The performance of the trained classifiers is quantified using
the classification accuracy and the area under the receiver operating characteristic
curve. Various cut-off setting schemes are considered to compute the classification
accuracy. Furthermore, aggregate performances and rankings will be computed that
will allow us to make some interesting conclusions. A rigorous statistical setup is
employed using the appropriate test statistics to compare the performance mea-
sures.

1B. Baesens, S. Viaene, J. Vanthienen, A Comparative study of state of the art classification
algorithms for credit scoring, Proceedings of the Seventh Conference on Credit Scoring and Credit
Control (CSCCVII’2001), Edinburgh, Scotland, September, 2001.

2B. Baesens, T. Van Gestel, S. Viaene, M. Stepanova, J. Suykens, J. Vanthienen, Benchmark-
ing State of the Art Classification Algorithms for Credit Scoring, Journal of the Operational
Research Society, 54(6), pp. 627-635, 2003.

53

54 Chapter 3. Building Scorecards for Credit Scoring

3.1 Problem Statement

In this section, we briefly discuss the basic problem statement and issues related
to credit scoring. A more elaborate discussion on this topic can be found in the
survey papers by e.g. Hand and Henley [105], Rosenberg and Gleit [196], and
Thomas [234], the books published by Hand and Jacka [107] and Thomas et al.
[235], and the PhDs of Henley [116] and Kelly [135]. Note that although the term
credit scoring is also sometimes used in the context of bankruptcy prediction, we
limit ourselves in this text to credit scoring in the context of granting consumer
loans.

Credit scoring is a technique that helps organizations decide whether or not to
grant credit to consumers who apply to them [234]. These customers may be bank
customers borrowing money or retail customers being sold goods on a deferred
payment scheme. The primary goal of credit scoring is to summarize all available
information about an applicant in a score which reflects the creditworthiness of the
applicant. If this score is above a predetermined threshold credit is granted, oth-
erwise credit is denied. The scores are usually computed using scoring algorithms
or scorecards which allow one to rank order all applicants by risk.

In the early years of credit scoring, the credit decision was made using a judg-
mental approach by merely inspecting the application form of the customer. One
then commonly focussed on the values of the 5 Cs of a customer: Character, Cap-
ital, Collateral, Capacity and Condition [234]. Nowadays, automated scorecards
are built using statistical methods to guide the credit granting decision, thereby
using both the applicant’s application form data and information obtained from
credit agencies. Especially logistic regression and discriminant analysis have been
widely applied in early credit scoring models [68, 74, 75, 261].

Originally, credit scoring aimed at deciding upon the creditworthiness of new
applicants. This is sometimes also referred to as application scoring. On the con-
trary, behavioral scoring aims at analyzing the behavior pertaining to the existing
customer base. Example questions that are addressed are: Should the bank aug-
ment the credit limit of a customer? How should it approach a customer whose
financial abilities start deteriorating once a loan was granted? Behavioral scoring
is becoming a very popular approach with a lot of potential for monitoring the
behavior of the existing customers and undertaking the appropriate actions.

It is important to remark that there is also a legal and ethical issue involved
in granting credit to customers. The Equal Credit Opportunities Act (1976) and
regulation B in the US prohibit the use of characteristics such as gender, marital
status, race, whether an applicant receives welfare payments, color, religion, na-
tional origin and age in making the credit decision. In [55], Crook investigated
whether organizations generally conform to these principles using a population of
households who were discouraged from applying for credit.

A first important issue when building scorecards concerns the definition of a

3.1. Problem Statement 55

bad customer. Two approaches can be distinguished here. The direct approach
constructs a scorecard by choosing a definition of bad on beforehand. Many defini-
tions have been suggested in the literature but the most common definition is that
a customer is considered bad if he or she has missed three consecutive months of
payments. Some authors even advocate the use of three categories of payers: good
payers, bad payers and poor payers [61]. The indirect approach towards scorecard
construction first tries to predict the values of other intermediate variables, e.g.,
balance, excess, months in arrears, which are closely related to the risk of default.
The predicted values of these variables are then typically combined using a deter-
ministic model to produce a global risk assessment. The advantage of using the
indirect method is that the predicted variables can then also be used to forecast
profit. Moreover, one can easily change the definition of bad by simply reformulat-
ing the deterministic model without having to re-estimate the prediction model.
E.g., Kelly and Hand [136] propose the use of global credit scoring models which
allow one to choose the definition of good when the classification is to be made
instead of when the scorecard is constructed. Li and Hand [148] develop indirect
credit scoring models using a multicriterion definition of bad. They illustrated that
after extensive model development the indirect approach gave results which were
competitive with those of the direct approach. Figure 3.1 illustrates the difference
between the direct and the indirect credit scoring approach.

PSfrag replacements

inputs

inputs

good/bad

good/bad

balance

arrears

turnover

predictive model

predictive model

deterministic model

indirect credit scoring

direct credit scoring

Figure 3.1: Direct versus indirect credit scoring.

Some authors argue to first cluster the population of applicants into homoge-
nous subpopulations with more or less the same risk characteristics and construct a
separate scorecard for each subpopulation instead of one overall scorecard built on
the entire population of applicants [262]. However, in [20], it was shown that this

56 Chapter 3. Building Scorecards for Credit Scoring

strategy will not necessarily result in a better discrimination and problems may
occur when choosing the appropriate cut-offs for the various individual scorecards.

While most existing credit scoring systems primarily focus on distinguishing
bad customers from good customers, it is also very important to know when cus-
tomers go bad [21, 221]. This information may then be used to e.g calculate the
profitability of an individual customer (profit scoring) or to improve the debt pro-
visioning strategy of the financial institution. This research question is usually
tackled by using survival analysis methods and will be thoroughly investigated in
a later chapter.

Scorecards are usually built on a population of past applicants of which the
repayment behavior is known in advance. These scorecards are then used to predict
the creditworthiness of future applicants. However, since customer populations are
likely to change due to e.g. new economic and demographic conditions (population
drift), the scorecards need to be replaced or dynamically updated at regular periods
in time.

The problem of fraud detection is somewhat related to credit scoring in the
sense that both share many of the same modeling problems and issues. E.g.,
in [146], a rule-based expert system is presented to help alert banks and other
financial institutions to fraudulent usage of consumer credit cards. In [256], the
use of machine learning techniques to predict automobile insurance fraud was
investigated.

3.2 Reject Inference

Most scorecards are typically built using a sample of previously accepted loans
which turned out to be either bad or good. These scorecards are then subsequently
used to score the future population of customers who apply for credit. It is possible
that this introduces some bias since a considerable amount of customers for which
credit was denied in the past are not properly taken into account in the scorecard
development process. Rejected applicants never received credit and their true class
label (bad or good customer) will never be known (see Figure 3.2). This problem

PSfrag replacements

population

a % accepted

b % rejected

x % good

y % bad

? % good

? % bad

Figure 3.2: The reject inference problem.

3.2. Reject Inference 57

has been widely recognized in the credit scoring industry and many attempts
have been suggested to take into account the rejected applicants in the scorecard
development process. These attempts are commonly referred to as reject inference.
Reject inference techniques try to assign probabilities of default to the rejected
applicants so that they can be included in the construction of the scorecard.

A first approach to reject inference is to consider all rejected applicants as bad
and build the scorecard. The main problem with this approach is that it reinforces
the screening process that is currently used by the financial institution (see chapter
6 by K. Leonard in the book of Hand and Jacka [107]). Another approach is to
look for approved loans which are similar to each rejected loan and assign the class
label of the former to the latter. However, the precise determination of ’similar’
proves to be quite difficult in practice. One of the most popular methods is to
build a scorecard on the accepted applicants and use this scorecard to score and
label the rejected applicants as either bad or good. Subsequently, a new scorecard
is constructed using the accepted applicants with their observed outcomes and the
rejected applicants with their predicted outcomes (see e.g. [220]).

In [104], Hand provides a discussion on the topic of reject inference and con-
cludes his paper by saying:

”...there is no unique best method of universal applicability, unless extra
information is obtained. That is, the best solution is to obtain more
information (perhaps by granting loans to some potential rejects) about
those applicants who fall in the reject region [104]”.

Hence, one of the best strategies to deal with reject inference is to grant credit
to every applicant during some period of time to gain credit information for the
entire population, but of course not many companies are eager to do so because
of the amount of credit loss that would be incurred. Nevertheless, in [22] Banasik
et al. were in the exceptional situation of being able to observe the repayment
behavior of customers that would normally be rejected. They concluded that the
scope for improving scorecard performance by including the rejected applicants
into the model development process is present but modest.

At present, it can be concluded that there is no consensus upon the need for
reject inference and how it should be tackled appropriately. Hence, following Kelly
[135], we do not concern ourselves with this extra complication in this thesis. Other
papers on this topic are (besides the references given in the introduction of section
3.1) e.g. [85, 101, 128]. In what follows, we will provide a literature overview on
the use of machine learning techniques discussed in chapter 2 for credit scoring.

58 Chapter 3. Building Scorecards for Credit Scoring

3.3 Literature Overview on using Machine Learn-

ing Techniques for Credit Scoring

Feelders et al. [86] compared the performance of linear discriminant analysis and
C4.5 decision trees on a data set obtained from the ABN AMRO bank which is a
well-known Dutch financial institution. The data set consisted of 2489 observations
each described by 38 inputs. The data was split into a training set (1700 Obs.)
and a test set (789 Obs.). A customer was categorized as bad if there has been
an arrear of 60 days or more. It was found that the p-value of the McNemar test
between the linear discriminant and the C4.5 classifier accuracy was 0.1417 and it
was left to the reader to decide upon the statistical significance of the difference.
It was also noted that the C4.5 tree used only 10 of the 38 inputs whereas the
linear discriminant classifier used 17 inputs to make the classification decision.

In [117], Henley and Hand propose an adjusted Euclidean distance metric for
a k-nearest neighbor credit scoring system (see section 2.1.8 of chapter 2). The
experiments were carried out on a data set of 19186 customers which applied
for mail-order credit. Each applicant was described by 16 categorical inputs.
Applicants who defaulted for three consecutive months were classified as bad.
All performance calculations were done on 5 randomizations of all available data
thereby each time using 80% of the observations for training and the remaining
20% for testing. Comparisons were made with linear regression, logistic regres-
sion, projection-pursuit regression3 and decision trees. It was concluded that the
k-nearest neighbor method marginally outperformed the other methods.

Yobas et al. [264] compare the predictive performance of linear discriminant
analysis, neural networks, genetic algorithms and C4.5 decision trees on a data set
of 1001 credit card payers with 14 inputs. A bad applicant was defined as a cus-
tomer who has missed one or more repayments. The performance was calculated
using leave-one-out and 10-fold cross-validation. It was concluded that the linear
discriminant analysis classifier yielded the best classification accuracy.

In [178], Piramuthu suggested the use of a filter input selection method to
improve the classification accuracy of decision trees induced by C4.5. The experi-
ments were, amongst other, conducted on the UCI Australian credit data set (653
Obs. and 14 inputs) using a 10-fold cross-validation setup. It was found that, for

3In projection-pursuit regression, one estimates a model consisting of a sum of smoothed
functions of linear combinations of the inputs as follows:

y =

M
∑

m=1

gm(ωT
mx). (3.1)

The functions gm(·) are called ridge functions. If M is chosen arbitrarily large, it can be shown
that the projection-pursuit regression model becomes a universal approximator. A two-step
estimation procedure is used to estimated gm(·) and ωm interchangeably. For more details, see
[93, 112].

3.3. Using Machine Learning Techniques for Credit Scoring 59

this data set, the proposed input selection method improved the predictive power
of the decision tree and also decreased its size. The same data set was used in [179]
where a comparison was made between neural networks and neurofuzzy systems
for credit scoring. The data set was 10 times randomly split into a training set (490
Obs.) and a test set (163 Obs.). It was concluded that neural networks yielded
a better classification accuracy than neurofuzzy systems but the latter have the
additional benefit of generating comprehensible fuzzy If Then rules which allow
one to explain the classification decision.

Desai et al. [62] contrasted the performance of multilayer perceptron neural
networks, modular neural networks, linear discriminant analysis and logistic re-
gression for three credit unions in the Southeastern United States for the period
1988 through 1991. After preprocessing, the data sets consisted of 505, 762 and
695 observations, respectively, each with 18 inputs. A bad applicant was defined
as someone whose most recent loan was either charged off or someone who went
bankrupt during the last 48 months. All other customers were defined as good pro-
vided that their most recent loan was between 48 months and 18 months old. The
classification techniques were evaluated using ten randomizations of the data each
time using 2/3 of the observations for training and the remaining 1/3 for testing.
Furthermore, the authors also investigated the performance differences between
customized credit scoring models, specifically tailored to the credit union under
investigation, and generic credit scoring models which aim at developing one over-
all classification model for all three unions. It was found that customized neural
networks performed very well at classifying the bad loans. Logistic regression and
neural networks yielded the same performance when looking at the percentage of
good and bad loans correctly classified. The performance of the generic models was
not so good as the customized models especially for the bad loans. This research
was further extended in [61] where genetic algorithms were also included in the
study and a three-way classification was adopted categorizing customers as either
good, poor or bad. A customer was classified as good if there were no payments
that had been overdue for 31 days or more, poor if the payment had ever been
overdue for 60 days or more, and bad if, at any time in the last 48 months, either
the customer’s most recent loan was charged off or the customer went bankrupt.
Using the same experimental setup as in [62], and only focussing on customized
credit scoring models, it was found that the linear discriminant analysis and lo-
gistic regression classifier compared favorably to the neural network and genetic
algorithm classifier. Neural networks performed somewhat better at classifying
the poor loans.

In [220], Steenackers and Goovaerts use logistic regression to build a scorecard
for loan data obtained from a Belgian credit company. The loans dated from
November 1984 till December 1986. A loan was considered to be bad after three
reminders. The data contained 2940 observations with 19 inputs and was split into
a training set of 2300 observations and a test set of 640 observations. Reject in-
ference was done by first estimating the logistic regression classifier on the sample

60 Chapter 3. Building Scorecards for Credit Scoring

of accepted applicants and then using this model to score and label the rejected
applicants. The final scorecard is then estimated on the entire population con-
sisting of the accepted applicants with their observed outcomes and the rejected
applicants with their predicted outcomes. No comparisons were made with other
classification techniques.

Arminger et al. [7] compare the classification accuracy of logistic regression,
decision trees and neural networks on a data set of 8163 consumer loans obtained
from a major financial institution in Germany. All classification models are con-
structed using 6 inputs. The data set was split into a training set, validation set
and test set whereby the validation set was used to avoid overfitting of the deci-
sion tree and neural network. It was concluded that the performance differences
between the three techniques are small with the logistic regression classifier as the
best technique. The authors also propose a way to combine the forecasts of the 3
techniques but this yielded no significant performance benefits.

West [259] investigates the use of five different types of neural networks for
credit scoring: multilayer perceptron, mixture-of-experts, radial basis function,
learning vector quantization and fuzzy adaptive resonance. The performance of
these neural networks is contrasted with the performance of linear discriminant
analysis, logistic regression, k-nearest-neighbor, kernel density estimation and de-
cision trees. The experiments are carried out on the Statlog German credit data
set (1000 Obs., 24 inputs) and the UCI Australian credit data set (690 Obs.,
14 inputs) using a 10-fold cross-validation setup. The author also investigates
the impact of misclassification costs. The best performance was obtained by the
mixture-of-experts neural network, the radial basis function neural network and
the logistic regression classifier.

Chang et al. [44] used Bayesian networks to graphically represent the condi-
tional dependencies and independencies in a credit scoring data set obtained from
a large U.K. bank. The data set consisted of 7104 observations with 34 inputs and
was split into a training set of 5000 records and a test set of 2104 records. The
AUC of the constructed networks was contrasted with the AUC of logistic regres-
sion using various input subsets. It was concluded that both techniques yielded
approximately the same performance and should be used in combination.

Note that this literature overview is by no means exhaustive. Other methods
that have been used for credit scoring are, e.g., genetic algorithms [24, 88], mathe-
matical programming [89, 106, 140], Markov Chains [56, 95, 149], and (graphical)
conditional independence models [108, 212, 219].

Most of the above studies are limited in terms of both the number of data sets
considered and the number of techniques implemented. Furthermore, the use of
the AUC as a performance criterion is also not widespread in the credit scoring
literature. In the following section, we will conduct a large scale benchmarking
study, similar to the one reported in section 2.4, on 8 credit scoring data sets.

3.4. Building Scorecards for Credit Scoring 61

3.4 Building Scorecards for Credit Scoring

3.4.1 Data Sets and Experimental Setup

Table 3.1 displays the characteristics of the data sets that will be used to evalu-
ate the performance of the different classification techniques [13]. The Bene1 and
Bene2 data sets were obtained from two major financial institutions in the Benelux
(Belgium, The Netherlands and Luxembourg). The UK1 and UK2 data sets are
from the same financial institution located in the U.K. but with other class distri-
butions. Also the UK3 and UK4 data sets are from the same U.K. financial institu-
tion but with different class proportions. For the Bene1, Bene2, UK1, UK2, UK3
and UK4 data sets, a bad customer was defined as someone who has missed three
consecutive months of payments. This is the definition that is commonly adopted
in the credit scoring industry [234]. The German credit and Australian credit data
sets are publicly available at the UCI repository (http://kdd.ics.uci.edu/).
Note that we use a somewhat different setup from the one used in section 2.4.
The reason is that most data sets are quite large and the variation that would be
obtained by resampling would be very small. Hence, we use a training set/test set
setup whereby each data set is split into 2/3 training set and 1/3 test set. The
classifiers are trained on the training set and evaluated on the test set.

Inputs Data set size Training set size Test set size Goods/Bads
Bene1 33 3123 2082 1041 66.7/33.3
Bene2 33 7190 4793 2397 70/30
UK1 16 9360 6240 3120 75/25
UK2 16 11700 7800 3900 80/20
UK3 19 3960 2640 1320 90/10
UK4 19 1980 1320 660 80/20
Germ 20 1000 666 334 70/30
Austr 14 690 460 230 55.5/44.5

Table 3.1: Characteristics of credit scoring data sets.

The topic of choosing the appropriate class proportions for classifier learning
has received much attention in the literature [258]. In this benchmarking study,
we use a variety of class distributions ranging from 55.5/44.5 for the Australian
credit data set to 90/10 for the UK3 data set.

Since the C4.5 and C4.5rules classifiers may yield better results with discretized
data, we will conduct experiments using both the (original) continuous data and
the discretized data. The discretization process will be carried out using the
discretization algorithm of Fayyad and Irani with the default options [83]. This

62 Chapter 3. Building Scorecards for Credit Scoring

algorithm uses an information entropy minimization heuristic to discretize the
range of continuous-valued attributes into multiple intervals. The discretized data
will also be used to train the TAN classifiers.

We encoded a nominal variable having r values by using r−1 (binary) dummy
variables. The continuous inputs are normalized to zero mean and unit variance
according to Equation 2.55. The following techniques discussed in chapter 2 will
be evaluated: linear discriminant analysis (LDA), quadratic discriminant anal-
ysis (QDA), logistic regression (LOG), linear programming (LP), least squares
support vector machines (LS-SVMs), standard support vector machines (SVMs),
neural networks (NN), naive Bayes (NB), tree augmented naive Bayes (TAN),
C4.5, C4.5rules, K-nearest neighbor with K=10 (KNN10), and K-nearest neigh-
bor with K=100 (KNN100). The LDA, QDA, LOG and LP classifiers require no
parameter tuning. For the LS-SVM and SVM classifiers, we used both linear and
RBF kernels and adopted the grid search mechanism reported in section 2.4.2 to
tune the hyperparameters γ and σ. The SVM and LS-SVM analyses were carried
out using the MatlabTM toolbox of Gavin Cawley 4 and the LS-SVMlab Tool-
box 5, respectively. The NN classifiers were trained using the Bayesian evidence
framework of David MacKay with the ARD extension [154, 155]. We used only
1 hidden layer influenced by theoretical works and varied the number of hidden
neurons from 1 to 10. We then chose the network with the best training set ac-
curacy for evaluation on the test set. All NN analyses were conducted using the
Netlab toolbox6. For the naive Bayes classifier, we use the kernel approximation
for continuous attributes. The naive Bayes and TAN analyses were done using the
Bayes Net Toolbox of Kevin Murphy7. Again, we set the confidence level for the
pruning strategy of C4.5 and C4.5rules to 0.25 which is the default value.

3.4.2 Setting the cut-off

When implementing a scorecard, one needs to choose a cut-off to map the scores
P (y = 1|x) to class labels y = 1 or y = 0. Probably the most simple way
is to set the cut-off in the middle of the score spectrum. E.g., for the logistic
regression classifier, one classifies an observation with characteristics x into class
1 if P (y = 1|x) > 0.5 and into class 0 otherwise. A major drawback of this naive
method is that it fails to properly take into account the prior class distributions
and the misclassification costs. E.g., when confronted with a very skew class
distribution, which is often the case in credit scoring and fraud detection, it can
easily be that P (y = 1|x) >> 0.5 for all values of x which would mean that all
customers would be classified as good (y = 1) and none as bad (y = 0) [257].
Although a high overall classification accuracy may be obtained in this way, the

4http://theoval.sys.uea.ac.uk/∼gcc/svm/
5http://www.esat.kuleuven.ac.be/sista/lssvmlab/
6http://www.ncrg.aston.ac.uk/netlab/
7http://www.ai.mit.edu/ murphyk/Software/BNT/bnt.html

3.4. Building Scorecards for Credit Scoring 63

most risky and costly class remains undetected.

Ideally, when setting the cut-off, one should take into account the misclas-
sification costs i.e. the cost of misclassifying a bad as good versus the cost of
misclassifying a good as bad. If one would know these numbers, an observation
could be classified into class 1 if

P (y = 1|x)C11 + P (y = 0|x)C10 ≤ P (y = 1|x)C01 + P (y = 0|x)C00, (3.2)

whereby Cij represents the misclassification cost of classifying an object with ac-
tual class j as class i. When assuming that correct classifications incur no cost
(C11 = C00 = 0) this boils down to assigning a customer to class 1 if

P (y = 1|x) ≥ C10

C10+C01

≥ 1

1+
C01
C10

.
(3.3)

Note that one only needs to know the ratio of both costs C01

C10
in order to make a

classification decision. When this ratio is large, the cut-off will be very different
from 0.5.

Although choosing a cut-off based on the ratio of the misclassification costs
is attractive from an economic perspective, it has to be noted that specifying the
exact values of the costs Cij is usually very difficult since they are typically depen-
dent upon the characteristics of the loan, e.g. amount, purpose, interest rate, and
thus vary from customer to customer. Furthermore, due to the changing economic
climate, the costs may also vary over time making their correct quantification less
obvious. Another issue which complicates the setting of the cut-off is the sample
which was used to train the classifier. Equation 3.2 implicitly assumes that the
sample which was used to train the classifier and estimate P (y = 1|x) was taken
in such a way such that the a priori class proportions P (y = 1) and P (y = 0) are
unbiased estimates of the true underlying proportions [257]. If the sample is not
representative for the true underlying population due to e.g. an oversampling of
the bads or undersampling of the goods, one may have to apply score adjustments
before using the scorecard in practice [198]. Hence, the issues of misclassification
costs and sample construction often necessitate one to rely on heuristically based
cut-off setting schemes.

A first alternative cut-off setting scheme is to set the cut-off such that the
number of predicted bads (goods) equals the actual number of bads (goods) in
the sample. Another method which is also often used in practice is based upon
the marginal good-bad rate. This scheme sets the cut-off at the point where the
marginal rate of goods to bads if it is dropped anymore goes below m : 1 whereby
common values for m are 3 and 5 [20, 235]. This is illustrated in the following
example.

Example 3.1

Consider the run-book of Table 3.2 depicting the effect of cut-off changes on the popu-

64 Chapter 3. Building Scorecards for Credit Scoring

lation. When assuming a marginal good-bad rate of 5:1 (3:1), the cut-off is set at 0.6
(0.5), respectively.

Cut-off Cum. goods Cum. bads Marginal good-bad rate

above score above score

0.9 1400 50 -
0.8 2000 100 12:1
0.7 2700 170 10:1
0.6 2950 220 5:1
0.5 3130 280 3:1
0.4 3170 300 2:1

Table 3.2: The marginal good-bad rate.

A major criticism on the use of the marginal good-bad rate method is that it
is heavily dependent upon the granularity of the cut-off change. In the next
subsection, we will present the results using three types of cut-off setting schemes:
using a cut-off of 0.5; using a cut-off such that the number of predicted bads
(goods) equals the actual number of bads (goods) and using cut-offs based on
marginal good bad rates of 5:1 and 3:1.

3.4.3 Results

Tables 3.3, 3.4, 3.5 and 3.6 report the test set PCC, sensitivity and specificity of
all classifiers on the eight credit scoring data sets using the four cut-off setting
schemes discussed in the previous subsection. We have used a special notational
convention whereby the best test set PCC performance per data set is underlined
and denoted in bold face, performances that are not significantly different at the
5% level from the top performance with respect to a one-tailed McNemar test are
tabulated in bold face, and statistically significant underperformances at the 1%
level are emphasized in italics. Performances significantly different at the 5% level
but not at the 1% level are reported in normal script. We also compute a ranking of
the different algorithms on each data set assigning rank 1 to the algorithm yielding
the best PCC and rank 17 to the algorithm giving the worst PCC. These ranks
are then averaged and compared using a Wilcoxon signed rank test of equality of
medians (see last column of Tables 3.3, 3.4, 3.5 and 3.6).

It can be seen from Table 3.3 that, for the first cut- off scheme, the RBF LS-
SVM classifier yielded the best average ranking (AR) for the PCC measure. The
LOG, LP, Lin LS-SVM, NN, C4.5 dis and KNN100 classifiers have statistically
the same AR for the PCC as the RBF LS-SVM classifier at the 5% significance
level. The PCC average rankings of the QDA, NB, TAN, and C4.5rules classifiers

3.4. Building Scorecards for Credit Scoring 65

are statistically inferior to the PCC AR of the RBF LS-SVM classifier at the 1%
level. It can also be observed that both the C4.5 and C4.5rules classifiers achieve
better average PCC rankings on the discretized data than on the continuous data.

Remember that the performance measures reported in Table 3.3 were calcu-
lated assuming a cut-off value of 0.5 on the classifier’s output. This may however
not be the most appropriate threshold to use for the more skewed U.K. data sets.
For these data sets, some classifiers have a tendency to always predict the ma-
jority class (good customer) yielding hereby 100% sensitivity and 0% specificity.
Especially the KNN100 classifier tends to predict the majority class for many of
the data sets considered. Hence, it might also be interesting to look at the results
of Table 3.4 assuming a cut-off such that the number of predicted bads (goods)
equals the actual number of bads (goods). Table 3.4 indicates that the NN clas-
sifier achieved the best average rank with those of the LOG, RBF LS-SVM, Lin
LS-SVM, Lin SVM, NB, and TAN not being statistically different from it at the
5% level. The KNN100 classifier now achieves better specificity values on the U.K.
data sets. However, the C4.5(dis) classifiers yield very bad sensitivity values on
the U.K. data sets. This can be explained by the fact that, due to the skewness
of these data sets, the C4.5(dis) trees are unable to grow a good tree and tend to
predict the majority class.

Table 3.5 and 3.6 present the results with cut-offs based on a marginal good-
bad rate of about 5:1 and 3:1, respectively [235, 20]. The cut-offs were calculated
by lowering the cut-off from 1 to 0 in steps of 0.05 until the marginal good-bad
rate reached the desired level. Using the 5:1 scheme, it was found that the Lin
SVM classifier gave the best PCC AR although it achieved very bad specificity
values on the U.K. data sets. The average rank of the LP, RBF LS-SVM, Lin LS-
SVM, NN, and C4.5 dis classifiers are not statistically different from that of the
Lin SVM classifier at the 5% level. Note that also the LP and C4.5 dis classifiers
yielded very bad specificity values for the U.K. data sets. For the 3:1 scheme, the
RBF LS-SVM classifier yielded the best average rank with those of the LDA, LP,
Lin LS-SVM, RBF SVM, Lin SVM, and C4.5 dis classifiers not being statistically
different from it at the 5% level. Again remark however that the LP, Lin SVM
and C4.5 dis classifiers yielded very bad specificity or sensitivity values for the
U.K. data sets. Also note that the 3:1 cut-off scheme, when compared to the
5:1 scheme, generally resulted in lower cut-offs and thus increased sensitivity and
decreased specificity values.

Table 3.7 reports the AUCs of all classifiers on the eight credit scoring data
sets. This table has the same setup as the PCC Tables. It clearly indicates that
the RBF LS-SVM classifier was two times ranked first, the NN classifier four times
and the Lin SVM and TAN classifiers each one time. It can be observed that the
best average rank was attributed to the NN classifier. The AR of the LDA, LOG,
RBF LS-SVM, Lin LS-SVM, and TAN classifiers are not statistically inferior at
the 5% significance level. The AR of the QDA, LP, C4.5, C4.5rules, C4.5dis, and
KNN10 classifiers are statistically worse than the AR of the NN classifier at the

66 Chapter 3. Building Scorecards for Credit Scoring

1% level. Note that for the Bene2, UK1 and UK2 data sets, the NN classifier
always performed significantly better than the LOG and LDA classifiers in terms
of AUC. Although the difference may be small in absolute terms, it has to be noted
that in a credit scoring context, an increase in the discrimination ability of even a
fraction of a percent may translate into significant future savings[117].

3.4.4 Discussion

When looking at the results depicted in Tables 3.3, 3.4, 3.5 and 3.6, it becomes clear
that the ranking of the classifiers highly depends upon the chosen cut-off strategy.
Hence, these tables should be interpreted in combination with the AUC values
reported in Table 3.7. Some general trends can be observed. Many classification
techniques yield performances which are quite competitive with each other. No
single classification technique emanates as the best for all criteria on all data sets.
This phenomenon is in the literature often described as the flat maximum effect
and was also found by Thomas as the following quote illustrates:

”it is surprising that the recurring theme is how little difference there
is in the classification accuracy of the different approaches [107]”.

One possible explanation for this phenomenon is that it is usually very difficult to
achieve a good separation between good and bad customers. Credit scoring data
sets are typically very noisy. Two customers with the same characteristics can
easily belong to different classes [104]. Another issue is that scorecard developers
are well aware of the discriminating characteristics of both classes, and there is
little extra knowledge to be modeled by the sophisticated classification techniques
[104].

From the performance tables it can be concluded that especially the non-linear
RBF LS-SVM and NN classifiers consistently yield a very good performance. How-
ever, the more simple, linear classification techniques such as LDA and LOG also
have a very good performance which is in the majority of the cases not statistically
different from that of the RBF LS-SVM and NN classifiers. This finding clearly
indicates that most credit scoring data sets are only weakly non-linear. Only a
handful of classifiers (e.g. QDA, NB and C4.5rules) yielded weak performances in
terms of both PCC and AUC whereas others (e.g. LP and C4.5 dis) gave a good
PCC performance but a rather bad AUC.

It needs also be noted that small (statistically significant) differences in classi-
fication performance (PCC or AUC), even a fraction of a percent may, in a credit
scoring context, translate into significant future savings. This is illustrated by the
following quotes of Henley and Hand [117] and Kelly [135]:

”Although the differences are small, they may be large enough to have

3
.4
.
B
u
ild
in
g
S
co
reca

rd
s
fo
r
C
red

it
S
co
rin

g
67

Technique Bene1 Bene2 Germ Austr UK1 UK2 UK3 UK4 AR

PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC

LDA 72.2 82.3 53.2 73.7 87.7 40.9 74.6 90.0 41.0 88.3 87.4 89.3 74.4 98.3 3.56 80.2 98.0 6.83 88.6 98.6 3.60 82.0 96.1 21.0 6.94

QDA 56.9 40.9 87.2 41.2 17.3 96.9 71.0 79.5 52.4 83.0 92.9 70.9 71.5 89.4 18.4 77.8 91.4 22.1 84.6 93.0 13.7 77.7 89.9 25.0 15.8

LOG 72.0 82.3 52.6 74.4 87.8 43.1 74.6 89.5 41.9 87.4 91.3 82.5 74.4 98.4 2.93 80.3 98.5 5.12 89.2 99.5 1.44 82.1 96.3 21.0 6.06

LP 71.2 79.8 54.9 74.2 88.4 40.9 71.9 92.6 26.7 88.3 86.6 90.3 74.8 100 0.00 80.5 100 0.00 89.5 100 0.00 81.2 100 0.00 6.50

RBF LS-SVM 73.1 83.9 52.6 74.3 88.4 41.3 74.3 96.5 25.7 89.1 89.8 88.3 74.8 100 0.00 80.7 99.7 2.23 89.0 99.1 3.60 82.1 97.4 16.1 3.56

Lin LS-SVM 71.4 84.3 46.8 73.7 89.5 36.9 73.7 91.3 35.2 88.3 87.4 89.3 74.6 99.2 1.65 80.4 99.5 1.58 89.5 100 0.00 81.8 97.9 12.1 6.75

RBF SVM 71.9 82.1 52.4 73.9 89.2 38.2 74.0 92.6 33.3 87.0 89.8 83.5 74.8 99.9 0.25 80.2 99.1 2.37 89.2 99.3 2.88 81.2 98.9 4.84 8.19

Lin SVM 71.2 82.1 50.4 73.9 88.4 40.2 71.0 95.6 17.1 88.3 86.6 90.3 74.8 100 0.00 80.5 100 0.00 89.5 100 0.00 81.2 100 0.00 6.94

NN 72.4 81.8 54.6 75.1 86.7 48.1 73.7 85.2 48.6 88.3 92.1 83.5 75.0 99.2 3.05 80.6 99.9 0.92 89.4 99.7 2.16 80.9 93.3 27.4 5.19

NB 65.8 55.1 86.1 59.0 51.1 77.5 72.2 87.8 38.1 82.2 100 60.2 70.8 87.2 22.1 77.8 90.6 25.4 88.1 97.1 11.5 77.9 88.4 32.3 15.1

TAN 69.5 78.2 53.2 73.4 82.7 51.7 72.5 87.3 40.0 87.4 92.9 80.6 72.9 93.9 10.6 77.4 90.6 22.9 87.1 96.2 10.1 76.8 87.9 29.0 12.9

C4.5 68.9 77.4 52.6 69.8 81.3 43.0 72.2 88.2 37.1 84.3 93.7 72.8 71.1 89.3 16.8 79.3 95.0 14.3 89.5 100 0.00 81.2 100 0.00 12.1

C4.5rules 71.5 80.4 54.6 71.4 76.8 58.8 71.0 91.3 26.7 85.2 90.6 78.6 67.1 77.4 36.6 80.4 99.9 0.13 88.5 98.6 2.16 81.7 97.6 12.9 11.3

C4.5 dis 69.3 78.6 51.5 73.1 85.3 44.6 74.6 87.3 46.7 89.1 94.5 82.5 74.8 100 0.00 80.5 100 0.00 89.5 100 0.00 81.2 100 0.00 6.69

C4.5rules dis 70.2 80.6 50.4 73.9 84.8 48.5 74.3 89.5 41.0 90.4 94.5 85.4 72.7 94.6 7.76 79.8 98.1 4.47 88.6 98.2 6.47 80.8 97.6 8.06 9.19

KNN10 66.7 83.9 34.0 70.8 92.2 21.0 70.7 94.8 18.1 86.5 93.7 77.7 73.2 96.1 5.22 79.8 98.1 4.20 89.5 100 0.00 81.2 97.9 8.87 11.9

KNN100 70.3 83.6 45.1 72.0 96.2 15.3 68.6 100 0.00 88.7 95.3 80.6 74.8 100 0.13 80.5 100 0.00 89.5 100 0.00 81.2 100 0.00 7.94

Table 3.3: Test set classification accuracy on credit scoring data sets assuming a cut-off of 0.5.

68
C
h
a
p
te
r
3
.
B
u
il
d
in
g
S
co
re
ca
rd
s
fo
r
C
re
d
it
S
co
ri
n
g

Technique Bene1 Bene2 Germ Austr UK1 UK2 UK3 UK4 AR

PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC

LDA 71.4 78.2 58.5 73.0 80.7 54.9 73.1 80.3 57.1 87.8 89.0 86.4 67.8 78.4 36.0 74.6 84.2 34.8 85.3 91.8 30.2 77.6 86.2 40.3 6.00

QDA 69.6 76.8 56.0 70.1 78.7 50.2 70.7 78.6 53.3 83.5 85.0 81.6 66.6 77.7 33.7 74.8 84.3 35.3 82.9 90.4 18.7 75.5 84.9 34.7 11.1

LOG 71.8 78.4 59.1 73.6 81.2 56.1 73.1 80.3 57.1 87.0 88.2 85.4 68.0 78.6 36.5 74.9 84.4 35.7 85.5 91.9 30.9 78.2 86.6 41.9 4.50

LP 70.6 77.6 57.4 73.0 80.8 55.1 70.7 78.6 53.3 87.8 89.0 86.4 63.2 75.4 27.0 67.8 80.0 17.5 83.6 90.9 22.3 75.5 84.9 34.7 11.1

RBF LS-SVM 72.1 78.7 59.6 72.8 80.6 54.7 73.1 80.3 57.1 88.7 89.8 87.4 67.4 78.2 35.4 75.0 84.5 36.0 83.8 90.9 23.0 77.9 86.4 41.1 5.38

Lin LS-SVM 71.2 78.0 58.2 73 80.7 54.9 73.1 80.3 57.1 87.8 89.0 86.4 68.1 78.7 36.8 74.7 84.3 35.2 84.7 91.4 27.3 78.2 86.6 41.9 5.63

RBF SVM 71.4 78.2 58.5 72.5 80.3 54.1 73.1 80.3 57.1 87.8 89.0 86.4 67.1 78.0 34.7 72.2 82.7 28.6 83.9 91.0 23.7 76.4 85.4 37.1 8.06

Lin SVM 71.0 77.9 57.9 73.1 80.8 55.2 71.3 79.0 54.3 89.6 90.6 88.3 63.6 75.7 27.7 73.3 83.4 31.7 84.1 91.1 24.5 74.5 84.3 32.3 8.44

NN 71.4 78.2 58.5 73.8 81.3 56.3 74.3 81.2 59.0 87.8 89.0 86.4 68.1 78.7 36.6 76.1 85.2 38.8 84.8 91.5 28.1 77.9 86.4 41.1 3.69

NB 72.5 79.0 60.2 69.1 77.9 48.5 73.1 80.3 57.1 89.6 90.6 88.3 68.1 78.7 36.8 75.3 84.6 36.7 84.2 91.2 25.2 76.7 85.6 37.9 4.75

TAN 69.3 76.2 56.0 73.2 80.9 55.4 72.5 79.9 56.2 88.7 89.8 87.4 68.8 79.1 38.4 75.6 84.9 37.6 83.8 90.9 23.0 75.5 84.9 34.7 6.31

C4.5 68.7 75.8 55.2 69.2 75.4 54.8 68.9 70.3 65.7 88.7 88.2 89.3 63.2 70.5 41.6 72.6 79.0 46.5 10.5 0.00 100 18.8 0.00 100 13.3

C4.5rules 71.0 76.7 60.2 71.4 76.8 58.8 55.4 53.3 60.0 46.5 9.45 92.2 65.7 74.3 40.3 73.5 80.6 43.9 41.7 37.8 75.5 73.0 78.9 47.6 13.0

C4.5 dis 69.1 76.4 55.2 71.4 79.3 52.9 72.2 78.6 58.1 88.3 86.6 90.3 25.2 0.00 100 19.5 0.00 100 10.5 0.00 100 18.8 0.00 100 13.6

C4.5rules dis 66.0 59.8 77.7 60.0 53.2 75.8 63.5 69.4 50.5 89.6 89.0 90.3 66.2 73.5 44.5 69.4 73.1 53.7 82.6 89.0 28.1 73.9 83.0 34.7 12.6

KNN10 65.4 63.2 69.6 68.1 75.0 52.0 68.6 73.8 57.1 83.9 81.9 86.4 56.8 57.9 53.6 66.9 70.8 50.9 75.1 79.9 33.8 67.9 71.6 51.6 15.5

KNN100 71.3 77.3 59.9 68.8 75.8 52.3 71.9 77.3 60.0 88.7 89.8 87.4 66.0 75.7 37.0 72.8 81.8 35.9 83.2 89.8 26.6 75.5 84.3 37.1 10.0

Table 3.4: Test set classification accuracy on credit scoring data sets assuming equal sample proportions.

3
.4
.
B
u
ild
in
g
S
co
reca

rd
s
fo
r
C
red

it
S
co
rin

g
69

Technique Bene1 Bene2 Germ Austr UK1 UK2 UK3 UK4 AR

PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC

LDA 62.4 48.4 89.1 62.2 51.4 87.3 58.7 42.8 93.3 86.5 83.5 90.3 50.7 41.3 78.6 78.5 94.2 14.1 85.3 91.8 30.2 68.0 68.8 64.5 9.44

QDA 56.3 39.7 87.7 40.9 16.9 96.9 71.0 79.5 52.4 86.1 90.6 80.6 49.2 38.1 82.3 64.3 61.8 74.5 83.9 91.8 16.5 77.1 88.1 29.8 10.8

LOG 58.3 40.9 91.4 62.2 51.5 87.3 65.0 55.9 84.8 84.8 80.3 90.3 50.0 40.1 79.4 66.3 65.3 70.0 88.9 98.6 5.76 74.1 77.8 58.1 9.25

LP 59.1 42.1 91.4 58.3 43.8 92.1 64.7 56.3 82.9 88.3 86.6 90.3 74.8 100 0.00 80.5 100 0.00 89.5 100 0.00 81.2 100 0.00 5.06

RBF LS-SVM 67.1 58.1 84.4 67.4 62.8 78.3 75.1 87.3 48.6 47.8 6.30 99.0 73.1 93.6 12.3 74.1 81.6 43.2 87.0 95.9 12.2 76.1 82.1 50.0 5.88

Lin LS-SVM 65.3 54.7 85.5 65.8 60.0 79.4 58.7 42.8 93.3 87.4 85.0 90.3 43.9 29.5 86.6 75.3 85.2 34.4 86.7 94.6 20.1 76.4 82.8 48.4 8.19

RBF SVM 62.0 47.5 89.4 62.2 51.4 87.3 63.5 54.6 82.9 85.2 81.9 89.3 26.1 1.41 99.2 74.6 88.2 18.8 86.9 95.4 14.4 77.1 87.1 33.9 8.94

Lin SVM 61.2 46.9 88.3 62.9 53.2 85.5 66.8 58.5 84.8 88.3 86.6 90.3 74.8 100 0.00 80.5 100 0.00 89.5 100 0.00 81.2 100 0.00 3.94

NN 67.1 58.1 84.1 64.1 53.8 88.2 70.4 68.6 74.3 81.3 74.8 89.3 49.3 36.8 86.3 61.1 55.0 86.2 80.0 84.5 41.7 61.5 59.3 71.0 10.3

NB 57.7 40.2 91.1 57.0 47.5 79.1 62.6 52.4 84.8 87.4 93.7 79.6 52.7 43.9 78.8 66.9 65.8 71.4 84.1 90.9 25.9 76.7 85.6 37.9 10.4

TAN 63.7 50.6 88.6 64.0 54.6 85.8 63.2 51.5 88.6 81.3 74.0 90.3 45.4 29.2 93.3 61.2 55.5 85.0 86.7 95.3 13.7 75.3 83.8 38.7 9.94

C4.5 59.7 46.2 85.2 31.1 1.91 99.3 68.9 68.1 70.5 88.7 88.2 89.3 61.4 66.0 47.8 71.3 75.5 53.7 89.4 99.9 0.00 81.1 99.8 0.00 7.06

C4.5rules 50.5 28.6 92.2 69.7 70.5 67.7 45.5 27.5 84.8 46.5 9.45 92.2 53.3 45.5 76.3 67.9 67.7 68.9 88.5 98.6 2.16 60.0 58.2 67.7 11.4

C4.5 dis 53.2 33.0 91.6 61.9 54.1 80.1 64.1 57.6 78.1 89.1 94.5 82.5 74.8 100 0.00 80.5 100 0.00 89.5 100 0.72 81.1 99.8 0.00 5.81

C4.5rules dis 52.7 31.1 93.9 50.5 34.3 88.3 74.3 89.5 41.0 91.7 94.5 88.3 72.7 94.6 7.76 57.7 50.6 87.3 84.9 92.4 21.6 73.5 81.0 41.1 10.0

KNN10 62.6 51.6 83.6 53.5 39.7 85.8 41.3 17.0 94.3 81.3 74.0 90.3 66.2 77.5 32.4 55.2 50.8 73.1 85.1 93.6 12.9 67.9 71.6 51.6 12.3

KNN100 56.2 37.2 92.2 57.1 45.2 85.0 62.0 52.0 83.8 79.6 69.3 92.2 44.5 29.3 89.6 58.3 54.0 76.3 83.2 89.8 26.6 63.5 62.5 67.7 14.4

Table 3.5: Test set classification accuracy on credit scoring data sets assuming a marginal good-bad rate around 5:1.

70
C
h
a
p
te
r
3
.
B
u
il
d
in
g
S
co
re
ca
rd
s
fo
r
C
re
d
it
S
co
ri
n
g

Technique Bene1 Bene2 Germ Austr UK1 UK2 UK3 UK4 AR

PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC Sens Spec PCC

LDA 66.1 56.6 84.1 65.8 60.6 78.0 65.3 57.2 82.9 88.7 87.4 90.3 72.3 92.4 12.7 72.4 77.6 50.9 88.6 98.1 7.91 81.4 94.4 25.0 7.44

QDA 56.3 39.7 87.7 40.9 16.9 96.9 68.6 73.4 58.1 85.7 92.1 77.7 70.4 86.2 23.2 76.7 88.3 28.8 83.9 91.8 16.5 77.4 88.6 29.0 12.1

LOG 68.4 61.7 81.1 66.2 59.8 81.2 71.6 72.5 69.5 87.8 86.6 89.3 60.0 59.3 62.2 71.9 77.2 50.5 87.7 95.7 20.1 79.2 88.6 38.7 8.88

LP 62.7 50.3 86.4 67.5 63.6 76.5 73.4 85.2 47.6 88.3 86.6 90.3 74.8 100 0.00 80.5 100 0.00 10.5 0.00 100 81.2 100 0.00 6.19

RBF LS-SVM 72.3 72.4 72.1 67.4 62.8 78.3 75.1 87.3 48.6 89.1 89.8 88.3 73.1 93.6 12.3 74.1 81.6 43.2 88.3 98.0 5.76 81.1 93.1 29.0 4.56

Lin LS-SVM 65.3 54.7 85.5 65.8 60.0 79.4 67.1 64.6 72.4 88.3 87.4 89.3 66.4 74.0 43.6 75.3 85.2 34.4 89.4 99.7 2.16 76.4 82.8 48.4 8.63

RBF SVM 69.6 65.7 77.2 66.7 61.9 78.0 73.7 79.5 61.0 87.8 88.2 87.4 73.8 96.7 6.11 74.6 88.2 18.8 89.2 99.3 2.88 81.5 95.5 21.0 4.94

Lin SVM 64.6 54.5 83.8 67.4 63.2 77.2 69.5 71.2 65.7 88.3 86.6 90.3 74.8 100 0.00 80.5 100 0.00 10.5 0.00 100 81.2 100 0.00 6.56

NN 63.3 51.0 86.6 66.8 60.1 82.5 65.0 56.3 83.8 87.8 89.8 85.4 45.6 29.6 93.0 66.3 64.1 75.2 88.9 98.8 5.04 78.9 88.4 37.9 11.3

NB 64.5 52.3 87.5 57.0 47.5 79.1 73.1 84.3 48.6 85.2 98.4 68.9 68.8 80.2 34.9 66.9 65.8 71.4 88.0 96.7 14.4 66.2 70.7 46.8 11.8

TAN 66.3 56.3 85.2 69.8 66.7 77.1 71.3 69.4 75.2 88.3 88.2 88.3 52.6 42.4 82.7 64.6 61.7 76.3 86.7 95.3 13.7 76.8 87.9 29.0 9.56

C4.5 63.3 54.7 79.7 65.7 63.1 71.9 68.9 68.1 70.5 88.7 88.2 89.3 71.1 89.3 16.8 71.3 75.5 53.7 10.5 0.00 100 81.1 99.8 0.00 9.94

C4.5rules 71.0 76.7 60.2 59.0 48.6 83.3 49.4 35.8 79.0 46.5 9.45 92.2 59.8 59.6 60.4 73.5 80.6 43.9 88.5 98.6 2.16 81.7 97.6 12.9 10.1

C4.5 dis 69.6 68.0 72.7 65.5 63.2 70.9 71.0 76.0 60.0 89.1 94.5 82.5 74.8 100 0.00 80.5 100 0.00 10.5 0.00 100 81.1 99.8 0.00 6.56

C4.5rules dis 62.2 52.3 80.8 55.6 44.5 81.6 63.5 69.4 50.5 91.7 94.5 88.3 57.1 53.0 69.2 61.2 57.0 78.8 88.6 98.2 6.47 73.0 80.2 41.9 12.8

KNN10 62.6 51.6 83.6 63.3 60.0 71.1 68.6 73.8 57.1 87.4 91.3 82.5 56.8 57.9 53.6 73.5 84.2 29.3 89.5 99.8 1.44 76.1 86.4 31.5 11.2

KNN100 64.1 54.1 83.0 62.0 57.0 73.7 70.4 73.4 63.8 83.0 78.0 89.3 52.7 45.5 73.8 79.2 95.4 12.4 89.4 99.7 1.44 73.2 81.0 39.5 10.6

Table 3.6: Test set classification accuracy on credit scoring data sets assuming a marginal good-bad rate around 3:1.

3
.4
.
B
u
ild
in
g
S
co
reca

rd
s
fo
r
C
red

it
S
co
rin

g
71

Technique Bene1 Bene2 Germ Austr UK1 UK2 UK3 UK4 AR
LDA 77.1 77.1 78.4 92.8 64.1 73.6 74.4 72.3 5.38

QDA 73.4 72.4 71.8 91.5 63.3 72.1 68.1 68.3 10.8

LOG 77.0 78.0 77.7 93.2 63.9 73.0 74.6 72.7 4.38

LP 76.1 77.5 76.3 92.6 56.4 62.3 62.0 62.2 11.9

RBF LS-SVM 77.6 77.8 77.4 93.2 65.0 74.7 72.9 73.1 3.38

Lin LS-SVM 76.9 77.1 78.4 92.9 64.4 73.7 73.8 72.5 5.50

RBF SVM 76.7 77.1 77.2 92.6 59.3 65.4 67.3 68.4 9.13

Lin SVM 75.9 77.5 76.6 93.6 56.4 63.9 62.9 62.3 10.1

NN 76.9 79.1 78.7 91.7 66.4 75.8 74.6 72.9 3.25

NB 76.5 70.6 77.2 93.1 65.8 73.7 66.9 67.9 7.88

TAN 75.5 78.2 78.3 93.4 66.8 74.5 64.0 66.6 5.63

C4.5 72.2 71.1 74.7 91.6 56.1 65.7 50.0 49.9 14.7

C4.5rules 71.6 74.2 62.0 85.3 61.7 70.4 60.3 68.4 13.0

C4.5 dis 73.0 73.2 74.6 93.1 50.0 50.0 50.4 49.9 13.7

C4.5rules dis 73.0 71.5 64.4 93.1 65.2 71.5 66.7 64.9 10.8

KNN10 71.7 69.6 70.2 91.4 58.9 65.4 63.0 67.0 14.1

KNN100 74.9 71.5 76.1 93.0 62.8 69.9 70.0 70.4 9.5

Table 3.7: Test set AUC on credit scoring data sets.

72 Chapter 3. Building Scorecards for Credit Scoring

commercial implications [117]”.

”Credit is an industry where improvements, even when small, can rep-
resent vast profits if such improvement can be sustained [135]”.

We would also like to point out that it is our firm belief that the best way to
augment the performance of a scorecard is not by merely looking for the best clas-
sification technique but also thoroughly investigating which predictors or inputs
should be considered. In other words, the search for more powerful and discrim-
inating inputs can yield substantial performance benefits. Financial institutions
should try to collect additional information describing all kinds of characteristics
of their loan applicants. It is in this context that many countries are nowadays
considering the development of credit reference agencies or credit bureaus. These
agencies try to collect all kinds of information of loan applicants on an aggre-
gate level: publicly available information, previous searches, shared contributed
information, aggregated information, fraud warnings, bureau-added value [235].
In most countries, credit agencies are still under development and have to obey
strict legislation. However, in the U.S. and U.K. they are already well established.
The most famous in the U.K. are Experian and Equifax.

Note that the conclusions found in our benchmarking study are very analogous
to those found in [256] where a similar benchmarking study was conducted for
expert automobile insurance fraud detection using logistic regression, C4.5, k-
nearest neighbor, neural networks, LS-SVMs, naive Bayes and TANs.

3.5. Conclusions 73

3.5 Conclusions

In this chapter, we conducted a large scale benchmarking study of the perfor-
mance of the classification techniques discussed in chapter 2 on 8 credit scoring
data sets. The following classification techniques were considered: linear dis-
criminant analysis, quadratic discriminant analysis, logistic regression, linear pro-
gramming, (least squares) support vector machines, neural networks, naive Bayes,
TAN, C4.5, C4.5rules, 10-nearest neighbor and 100-nearest neighbor. We used a
training set/test set setup and the performance was quantified by the percentage
correctly classified observations and the area under the receiver operating charac-
teristic curve. In order to compute the former, we used different types of cut-off
setting schemes: a cut-off of 0.5, a cut-off based on equal sample proportions and
cut-offs based on marginal good-bad rates around 5:1 and 3:1. The PCCs were
compared using McNemar’s test and the AUCs using the test of DeLong, DeLong,
and Clarke-Pearson. Average performances and rankings were also computed and
compared using the Wilcoxon signed rank test.

It was concluded that many classification techniques yielded rather similar
performances. The RBF LS-SVM and NN classifiers performed especially well
in all cases but also simple classifiers such as LDA and LOG gave very good
performances. It was also noted that in order to improve the performance of
a scorecard, financial institutions should look for more powerful, discriminating
inputs obtained from e.g. credit bureau agencies. An interesting topic for further
research might be to investigate the additional performance benefits obtained from
combining several classifiers by using voting schemes. Another avenue for future
research is to repeat the same benchmarking experiment but consider a continuous
dependent variable representing e.g. number of months in arrears, amount of
account overdraft, etc.

In this chapter, we primarily focussed on developing scorecards that achieve
a high performance in terms of PCC or AUC. However, blindly applying an op-
timized classification technique without thoroughly inspecting the values of its
estimated parameters and reasoning is not appropriate for credit scoring. Ideally,
the trained classification technique should also provide the expert with some ex-
planation about why it classifies a particular applicant as good or bad. Capon
was one of the first authors to argue that credit scoring systems should focus
more on providing explanations for why customers default instead of merely try-
ing to develop scorecards which accurately distinguish good customers from bad
customers:

”What is needed, clearly, is a redirection of credit scoring research ef-
forts toward development of explanatory models of credit performance
and the isolation of variables bearing an explanatory relationship to
credit performance” [41].

74 Chapter 3. Building Scorecards for Credit Scoring

Moreover, note that there is also often a legal obligation to give some explana-
tion of the reason why credit is declined. Hence, for a successful adoption of the
constructed scorecards into the daily credit decision environment, two properties
are essential. First, the scorecards should achieve a high performance in discrim-
inating bad customers from good customers. Furthermore, they should also be
made intelligent in the sense that they provide a clear insight to the expert about
how and why a certain applicant is classified as good or bad. In this chapter,
we found that, amongst other, neural networks achieved a very good performance
in distinguishing good customers from bad customers. However, their complex
mathematical internal workings limit their comprehensibility and prohibit their
practical use. In the following chapter, we will investigate how the neural network
black box may be opened using rule extraction techniques that will provide the
expert with a comprehensible explanation behind the classifications made by the
network. In this way, we will try to build scorecards which are at the same time
both powerful and understandable.

Chapter 4

Building Intelligent Systems

for Credit Scoring using

Neural Network Rule

Extraction

In this chapter, we will investigate how neural network rule extraction techniques
may be adopted to develop intelligent systems for credit scoring1,2,3 In chapter
3, we have seen that neural networks are amongst the best techniques for credit
scoring. However, we primarily focussed there on developing networks with high
predictive accuracy without trying to explain how the classifications are being made.
Clearly, this plays a very pivotal role in credit-risk evaluation as the evaluator may
be required to give a justification why a certain credit application is approved or
rejected. Recent developments in algorithms that extract rules from trained neural
networks enable us to generate explanatory classification rules that explain the deci-
sion process of the networks. The purpose of this chapter is to investigate if these
neural network rule extraction techniques can generate meaningful and accurate
rule sets for the credit-risk evaluation problem. Hereto, we conduct experiments
on the German credit, Bene1 and Bene2 data sets. Again, our main interest lies

1B. Baesens, R. Setiono, C. Mues, J. Vanthienen, Using Neural Network Rule Extraction and
Decision Tables for Credit-Risk Evaluation, Management Science, 49(3), pp. 312-329, 2003.

2B. Baesens, R. Setiono, C. Mues, S. Viaene, J. Vanthienen, Building credit-risk evaluation
expert systems using neural network rule extraction and decision tables, Proceedings of the
Twenty Second International Conference on Information Systems (ICIS’2001), New Orleans,
Louisiana, USA, December, 2001.

3B. Baesens, C. Mues, R. Setiono, M. De Backer, J. Vanthienen, Building Intelligent Credit
Scoring Systems using Decision Tables, Proceedings of the Fifth International Conference on
Enterprise Information Systems (ICEIS’2003), Angers, pp. 19-25, April 2003.

75

76 Chapter 4. Neural Network Rule Extraction for Credit Scoring

in finding the distinguishing characteristics between good customers and bad cus-
tomers. Both the continuous and the discretized data sets will be analyzed. Tech-
niques that will be adopted are Neurolinear [210], Neurorule [208], Trepan [53],
and Nefclass [171]. The performance of these methods will be compared with the
widely used C4.5 and C4.5rules algorithms [187] in terms of predictive accuracy
and conciseness of the generated rule sets or decision trees. In a subsequent step
of the decision support system development process, the extracted rules will be rep-
resented in an alternative way using decision tables [165, 248]. This is motivated
by the fact that research in knowledge representation suggests that graphical rep-
resentation formalisms can be more readily interpreted and consulted by humans
than symbolic rules [199].

4.1 An Overview of Neural Network Rule Extrac-

tion

As universal approximators, neural networks can achieve significantly better pre-
dictive accuracy compared to models that are linear in the input variables. Un-
fortunately, an often mentioned drawback associated with using neural networks
is their opacity. This refers to the fact that they do not allow formalization of the
relationship between the outputs and the inputs in a user-friendly, comprehensible
way. Neural networks are then commonly described as black box techniques be-
cause they generate complex mathematical models which relate the outputs to the
inputs using a set of weights, biases and non-linear activation functions which are
hard for humans to interpret. It is precisely this black box property that prevents
them from being used as effective management science tools in real-life situations
(e.g. credit-risk evaluation) where besides having accurate models, explanation of
the predictions being made is essential.

In the literature, the problem of explaining the neural network predictions has
been tackled by techniques that extract symbolic rules or trees from the trained
networks. These neural network rule extraction techniques attempt to open up
the neural network black box and generate symbolic, comprehensible descriptions
with approximately the same predictive power as the neural network itself. An
advantage of using neural networks as a starting point for rule extraction is that the
neural network considers the contribution of the inputs towards classification as a
group, while decision tree algorithms like C4.5 measure the individual contribution
of the inputs one at a time as the tree is grown.

Andrews, Diederich and Tickle [5] propose a classification scheme for neural
network rule extraction techniques based on the following criteria:

1. Translucency of the extraction algorithm with respect to the underlying neu-
ral network;

4.1. An Overview of Neural Network Rule Extraction 77

2. Expressive power of the extracted rules or trees;

3. Specialized training regime of the neural network;

4. Quality of the extracted rules;

5. Algorithmic complexity of the extraction algorithm.

The translucency criterion considers the technique’s perception of the neural
network. A decompositional approach is closely intertwined with the internal
workings of the neural network. It typically starts extracting rules at the level of
the individual hidden and output units by analyzing the activation values, weights
and biases. On the other hand, a pedagogical algorithm considers the trained
neural network as a ”black box”. Instead of looking at the internal structure of
the network, these algorithms directly extract rules which relate the inputs and
outputs of the network. These techniques typically use the trained network as an
oracle to label or classify artificially generated training examples which are then
used by a symbolic learning algorithm. In fact, most pedagogical algorithms lend
themselves very easily to rule extraction out of other machine learning algorithms
(e.g. k-nearest neighbor, support vector machines, ...).

The expressive power of the extracted rules depends on the language used
to express the rules. Many types of rules have been suggested in the literature.
Propositional rules are simple If... Then... expressions based on conventional
propositional logic. An example of a propositional rule is:

If Purpose = second hand car And Savings Account ≤ 50Euro Then

Applicant = bad.
(4.1)

A set of propositional rules is sometimes also termed a disjunctive normal form
(DNF) representation because the class concept can be expressed as a disjunction
of one or more conjunctions.

An oblique rule is a propositional rule whereby each condition represents a
separating hyperplane given in the form a linear inequality. An example of an
oblique rule is:

If 0.84 Income + 0.32 Savings Account ≤ 1000Euro Then Applicant = bad.
(4.2)

Oblique rules allow for more powerful decision surfaces than propositional rules
since the latter allow only axis-parallel decision boundaries. This is illustrated in
Figure 4.1. Figure 4.1 represents a classification problem involving two classes,
represented by ’+’ and ’o’ respectively, each described by two inputs x1 and x2.
The left hand side illustrates an oblique rule separating both classes and the right
hand side a set of propositional rules inferred by e.g. C4.5 [187]. Clearly, the
oblique rule provides a better separation than the set of propositional, axis-parallel,
rules. Augmenting the number of training points will probably increase the number

78 Chapter 4. Neural Network Rule Extraction for Credit Scoring

PSfrag replacements

x
2

x1

(a) Oblique rule

PSfrag replacements

x
2

x1

(b) Propositional rule

Figure 4.1: Oblique rules versus propositional rules [187].

of axis parallel decision boundaries. Hence, this example illustrates that oblique
rules may provide a more powerful, concise separation than a set of propositional
rules. However, this advantage has to be offset against the loss of comprehensibility
since oblique rules are harder to interpret for the domain expert.

M-of-N rules are usually expressed as follows:

If {at least/exactly/at most} M of the N conditions (C1,C2, ...,CN)
are satisfied Then Class = 1.

(4.3)

These types of rules allow one to represent complex classification concepts more
succinctly than classical propositional DNF rules. Consider e.g. the Exclusive Or
(XOR) problem depicted in Table 4.1. When representing the XOR problem as a

I1 I2 Class
0 0 0
0 1 1
1 0 1
1 1 0

Table 4.1: The XOR classification problem.

set of propositional DNF rules, one obtains:

If I1 = 0 And I2 = 1 Then Class = 1,
If I1 = 1 And I2 = 0 Then Class = 1,
Default Class = 0.

(4.4)

4.1. An Overview of Neural Network Rule Extraction 79

When using M-of-N rules, the same target concept can be represented as follows:

If exactly 1 of {I1 = 1, I2 = 1} Then Class = 1, (4.5)

which is a more concise representation than in 4.4.

All rule types considered above are crisp in the sense that their antecedent is
either true or false. Fuzzy rules allow for more flexibility and are usually expressed
in terms of linguistic concepts which are easier to interpret for humans. We defer
the discussion on fuzzy rules to chapter 5 where we will investigate both genetic
fuzzy and neurofuzzy rule extraction algorithms.

The third criterion of the schema suggested by Andrews et al. considers the
portability of the rule extraction technique to various network architectures. This
is closely related to the translucency criterion since pedagogical algorithms are
easier to port to other networks than decompositional algorithms. Most of the
latter require a specialized network architecture or training method to simplify the
rule extraction process. E.g. in [208, 210] an augmented cross-entropy objective
function is used to train and prune the network whereas in [6] a local cluster net
is used to facilitate the rule extraction.

The quality of the extracted rule set can be expressed in various ways. Three
important criteria are: accuracy, fidelity and comprehensibility. While the first and
the last are obvious, the fidelity criterion measures how well the extracted rule set
mimics the behavior of the neural network i.e. performs the same classifications
as the neural network itself (cf. infra).

Finally, the last criterion considers the algorithmic complexity of the rule ex-
traction algorithm. However, it has to be noted that few authors report on this
issue.

We would like to add an extra criterion to the framework of Andrews et al.,
namely the task for which the rule extraction algorithm was developed. We hereby
distinguish a classification task from a regression task. In a classification context,
the target concept belongs to a specific predefined class whereas in a regression
context, the output is continuous and unlimited. Recently, rule extraction algo-
rithms have been suggested to infer rules for a regression task.

In Table 4.1, we provide an overview of some popular neural network rule
extraction algorithms which have been presented in the literature. The algorithms
are characterized with respect to the first two criteria of the schema of Andrews
et al. and by the task for which they were originally developed.

In the following subsections, we will discuss the Neurolinear, Neurorule and
Trepan extraction algorithms. The motivation for choosing these algorithms is
that they have different characteristics with respect to the classification scheme
suggested by Andrews et al., and that they thus tackle the extraction problem in
a totally different way. To our knowledge, the performance of these algorithms

80 Chapter 4. Neural Network Rule Extraction for Credit Scoring

has never been compared for rule or tree extraction using real-life data.

Technique Translucency Rule expressiveness Task

Neurolinear [210] decompositional oblique rules classification
Neurorule [208] decompositional propositional rules classification
Trepan [53] pedagogical Trees with M-of-N splits classification
Nefclass [171] decompositional descriptive fuzzy rules classification
Rulex [6] decompositional propositional rules classification
VIA [236] pedagogical propositional rules classification
Fernn [206] decompositional oblique, propositional classification

and M-of-N rules
Subset [237] decompositional propositional rules classification
MofN [237] decompositional M-of-N rules classification
Brainne [201] pedagogical propositional rules classification
Bio-Re [232] pedagogical propositional rules classification
Partial-Re [232] decompositional propositional rules classification
Full-Re [232] decompositional propositional rules classification
Glare [102] decompositional propositional rules classification
RX [203] decompositional propositional rules classification
Real [52] pedagogical propositional and classification

M-of-N rules
Anfis [127] decompositional descriptive fuzzy rules regression
Refann [207] decompositional propositional rules regression
Nefprox [173] decompositional descriptive fuzzy rules regression

Table 4.2: Characteristics of neural network rule extraction techniques.

4.2 Neural Network Rule Extraction using Neu-

rolinear and Neurorule

Neurolinear and Neurorule are algorithms that extract rules from trained 3 layered
feedforward neural networks. Both techniques share the following common steps
[208, 210]:

1. Train a neural network to meet the prespecified accuracy requirement;

2. Remove the redundant connections in the network by pruning while main-
taining its accuracy;

3. Discretize the hidden unit activation values of the pruned network by clus-
tering;

4.2. Neural Network Rule Extraction using Neurolinear and Neurorule 81

4. Extract rules that describe the network outputs in terms of the discretized
hidden unit activation values;

5. Generate rules that describe the discretized hidden unit activation values in
terms of the network inputs;

6. Merge the two sets of rules generated in steps 4 and 5 to obtain a set of rules
that relates the inputs and outputs of the network.

Both techniques differ in their way of preprocessing the data. Neurolinear works
with continuous data which is normalized e.g. to the interval [−1, 1]. On the other
hand, Neurorule assumes the data are discretized and represented as binary inputs
using the thermometer encoding [215] for ordinal variables and dummy encoding
for nominal variables.

Table 4.3 illustrates the thermometer encoding procedure for the ordinal In-
come variable. The continuous Income attribute is first discretized to the values

Original input Categorical Thermometer

input inputs

I1 I2 I3
Income ≤ 800 Euro 1 0 0 0
Income > 800 Euro 2 0 0 1
and ≤ 2000 Euro
Income > 2000 Euro 3 0 1 1
and ≤ 10000 Euro
Income > 10000 Euro 4 1 1 1

Table 4.3: The thermometer encoding procedure for ordinal variables.

1, 2, 3 and 4. This can be done by either a discretization algorithm (e.g. the
algorithm of Fayyad and Irani [83]) or according to the recommendation from the
domain expert. The four values are then represented by three thermometer inputs
I1, I2 and I3. If I3 is 1, this corresponds to categorical Income input ≥ 2, or
original Income input > 800 Euro. This encoding scheme facilitates the genera-
tion and interpretation of the propositional If-then rules as the following example
illustrates.

Example 4.1

Consider the following different schemes for encoding the categorical Income attribute:

Income Scheme 1 Scheme 2 Thermometer

(I1,I2) (I1) (I1,I2,I3)

≤ 800 (0,0) 0.0 (0,0,0)
]800, 2000] (0,1) 0.3 (0,0,1)
]2000, 10000] (1,0) 0.6 (0,1,1)
>10000 (1,1) 1.0 (1,1,1)

82 Chapter 4. Neural Network Rule Extraction for Credit Scoring

Only the thermometer coding allows for an easy mapping of the encoded binary data
back to the original attribute:

• I3 = 0 if and only if income is less than or equal to 800.

• I2 = 0 if and only if income is less than or equal to 2000.

• I1 = 0 if and only if income is less than or equal to 10000.

equivalently,

• I3 = 1 if and only if income is bigger than 800.

• I2 = 1 if and only if income is bigger than 2000.

• I1 = 1 if and only if income is bigger than 10000.

Scheme 1 does not allow such an easy interpretation of the binary encoded input. Scheme
2 cannot be used for two reasons: (a) the rule extraction algorithms work only on discrete
data, (b) a sense of magnitude is implied in the encoding, for example 0.6 is 2 times 0.3,
while income in]2000, 10000] does not necessarily mean twice the income in]800, 2000].

Neurorule assumes the nominal variables are represented by dummies. For
example, when a nominal variable has 3 values, it is encoded with 2 dummy
variables according to the setup shown in Table 4.4.

I1 I2
Purpose=car 0 0
Purpose=real estate 0 1
Purpose=other 1 0

Table 4.4: The dummy encoding procedure for nominal variables.

Both Neurorule and Neurolinear typically start from a one-hidden layer neural
network with hyperbolic tangent hidden neurons and sigmoid or linear output
neurons. For a classification problem with C classes, C output neurons are used
and the class is assigned to the output neuron with the highest activation value
(winner-take-all learning). Figure 4.2 presents an example of such a network.

The network is then trained to minimize the following augmented cross-entropy
error function:

F (W,V) = P (W,V)−
C
∑

c=1

N
∑

i=1

[tic log yic + (1− tic) log(1− yic)], (4.6)

4.2. Neural Network Rule Extraction using Neurolinear and Neurorule 83

PSfrag replacements

x1

...

xn

b
(1)
1

b
(2)
1

b
(1)
nh

h1

hnh

b
(2)
2

W11

Wnhn

V11

V2nh

Class 1

Class 2

Figure 4.2: Example network used by Neurorule and Neurolinear for rule extrac-
tion.

with

P (W,V) = ε1

H
∑

h=1

(
C
∑

c=1

βV2
ch

1 + βV2
ch

+
n
∑

j=1

βW2
hj

1 + βW2
hj

) + ε2

H
∑

h=1

(
C
∑

c=1

V2
ch +

n
∑

j=1

W2
hj),

(4.7)
where C is the number of classes, N the number of data points, n the number of
inputs, H the number of hidden nodes, tic is 1 if observation i belongs to class
c and 0 otherwise, yic is the neural network output for the cth class of the ith

observation, Whj is the weight connecting input node j with hidden node h, Vch

is the weight connecting hidden node h with the output class node c, and ε1, ε2
and β are positive parameters.

The rationale behind the cross-entropy error function has been discussed in
subsection 2.1.1 of chapter 2. The penalty function P (W,V) is added to the cost

function F (W,V) of the network to encourage weight decay. Since f(w) = w2

1+w2

approaches 0 when w is small and 1 when w is large, the first term of P (W,V)
approximates the number of relevant, non-zero weights in the network. The β
parameter is then added to control how fast the irrelevant weights converge to
zero. The larger the β parameter, the faster the irrelevant weights will converge
to zero. The second part of P (W,V) additionally prevents these weights from
taking on excessive values. The parameters ε1 and ε2 then reflect the relative
importance of the accuracy of the neural network versus its complexity. Typical
values for these parameters are: β=10, ε1=10−1 and ε2=10−5 [204, 208]. The

84 Chapter 4. Neural Network Rule Extraction for Credit Scoring

cost function F (W,V) is minimized using the BFGS method which is a modified
Quasi-Newton algorithm [23, 60]. This algorithm converges much faster than
the standard backpropagation algorithm and the total error decreases after each
iteration step which is not necessarily the case in the backpropagation algorithm
[202].

Determining the optimal number of hidden neurons is not a trivial task. In
the literature, two approaches have been suggested to tackle this problem. A
growing strategy starts from an empty network and gradually adds hidden neurons
to improve the classification accuracy. On the other hand, a pruning strategy
starts from an oversized network and removes the irrelevant connections. When
all connections to a hidden neuron have been removed, it can be pruned. The
latter strategy is followed by Neurolinear and Neurorule. The inclusion of the
term P (W,V) into the objective function F (W,V) of the network allows it to
efficiently remove connections based upon the magnitude of the weights. In [204],
two criteria were proposed:

• If ωij = max
k=1,2

|Wji × Vkj | < η, then the connection from input unit i to

hidden unit j is removed from the network.

• If |Vkj | < η, then the connection from hidden unit j to output unit k is
removed.

The prescribed value of η is given in [204]. Using this value, it is guaranteed that
removal of a connection that satisfies one of the two criteria will not affect the
accuracy of the network on the training data set. Note that this pruning step
plays an important role in both rule extraction algorithms since it will facilitate
the extraction of a compact, parsimonious rule set. After having removed one or
more connections, the network is retrained and inspected for further pruning.

Once a trained and pruned network has been obtained, the activation values
of all hidden neurons are clustered. Clustering makes it easier to extract rules
because:

• The number of discrete representations of the data is reduced significantly.
Consider a data set with thousands of samples such as the Bene1 data set and
suppose the clustering process groups the activation values into two subin-
tervals: those in [−1, α) and those in [α, 1]. This makes the rule extraction
process trivial: those samples with activation values in the first subinterval,
predict Class 1. Samples in the second subinterval, predict Class 2.

• In general, from a network with H hidden units with Ih subintervals for
hidden units h = 1, 2, . . . H, there will be at most S = I1× I2...× IH unique
samples, and S is usually a very small fraction of the original number of
samples.

4.2. Neural Network Rule Extraction using Neurolinear and Neurorule 85

In the case of hyperbolic tangent hidden neurons, the activation values lie in the
interval [−1, 1]. A simple greedy clustering algorithm then starts by sorting all
these hidden activation values in increasing order [211]. Adjacent values are then
merged into a unique discretized value as long as the class labels of the corre-
sponding observations do not conflict. The merging process hereby first considers
the pair of hidden activation values with the shortest distance in between. An-
other discretization algorithm is the Chi2 algorithm which is an improved and
automated version of the ChiMerge algorithm [137] and makes use of the χ2 test
statistic to merge the hidden activation values [152].

In step 4 of Neurolinear and Neurorule, a new data set is composed consisting
of the discretized hidden unit activation values and the class labels of the corre-
sponding observations. Duplicate observations are removed and rules are inferred
relating the class labels to the clustered hidden unit activation values. This can be
done using an automated rule induction algorithm such as X2R [153] or manually
when the pruned network has only a few hidden neurons and inputs. Note that
steps 3 and 4 can be done simultaneously by C4.5(rules) since the latter can work
with both discretized and continuous data [187].

In the last two steps of both rule extraction algorithms, the rules of step 4 are
translated in terms of the original inputs. First, the rules are generated describing
the discretized hidden unit activation values in terms of the original inputs. This
rule set is then merged with that of step 4 by replacing the conditions of the latter
with those of the former. For Neurolinear, this process is fairly straightforward
as the following example illustrates. Suppose we have a hidden unit h with two
incoming weights w1 and w2 corresponding to the inputs I1 and I2. Furthermore,
for the sake of simplicity, suppose the activation values of h have been discretized
into the intervals [−1, a[and [a, 1] and the following rule has been inferred:

If discretized activation h = 1 Then Class = 1. (4.8)

Translating the rule in terms of the original inputs, we have:

If tanh(w1I1 + w2I2) < a Then Class = 1, (4.9)

or
If (w1I1 + w2I2) < tanh−1(a) Then Class = 1, (4.10)

with

tanh−1(x) =
ln(1+x

1−x)

2
. (4.11)

The above rule then represents an oblique classification rule. In the case of Neu-
rorule, one might again use an automated rule induction algorithm (e.g. X2R,
C4.5) to relate the discretized hidden unit activation values to the inputs.

In [114], both Neurolinear and Neurorule were applied to the diagnosis of hepa-
tobiliary disorders. It was concluded that the rules generated by Neurolinear were

86 Chapter 4. Neural Network Rule Extraction for Credit Scoring

slightly more accurate and concise than the rules generated by Neurorule. In [205],
Neurorule was applied for the diagnosis of breast cancer and in [211] to detect the
characteristics of organizations adopting information technology.

4.3 Neural Network Tree Extraction using Trepan

Trepan was first introduced in [50, 53]. It is a pedagogical tree extraction algorithm
extracting decision trees from trained neural networks with arbitrary architecture.
Like in most decision tree algorithms [33, 187], Trepan grows a tree by recursive
partitioning. However, it hereby uses a best-first expansion instead of a depth-
first strategy. At each step, a queue of leaves is further expanded into sub-trees
until a stopping criterion is met. Another crucial difference with existing decision
tree induction algorithms is that the latter have only a limited set of training
observations available. Hence, these algorithms typically suffer from having fewer
and fewer training observations available for deciding upon the splits or leaf node
class labels at lower levels of the tree. On the other hand, the primary goal of
neural network rule extraction is to mimic the behavior of the trained neural
network. Hence, instead of using the original training observations, Trepan first
relabels them according to the classifications made by the network. The relabelled
training data set is then used to initiate the tree growing process. Furthermore,
Trepan can also enrich the training data with additional training instances which
are then also labelled (classified) by the neural network itself. The network is thus
used as an oracle to answer class membership queries about artificially generated
data points. This way, it can be assured that each node split or leave node class
decision is based upon at least Smin data points where Smin is a user defined
parameter. In other words, if a node has only m training data points available
and m < Smin, then Smin−m data points are additionally generated and labelled
by the network. This process is often referred to as active learning.

Generating these additional data points is by no means a trivial task. First of
all, care should be taken that the generated data instances satisfy all constraints
(conditions) that lie from the root of the tree to the node under consideration.
Given these constraints one approach might be to sample the data instances uni-
formly. However, a better alternative would be to take into account the distri-
bution of the data. This is the approach followed by Trepan. More specifically,
at each node of the tree, Trepan estimates the marginal distribution of each in-
put. For a discrete valued input, Trepan simply uses the empirical frequencies of
the various values whereas for a continuous input x, a kernel density estimation
method is used to model the probability distribution f(x) as follows [214]:

f(x) =
1

m

m
∑

j

[
1√
2π

exp−(
x−µj

2σ)2], (4.12)

whereby m is the number of training examples used in the estimate, µj is the

4.3. Neural Network Tree Extraction using Trepan 87

value of the input for the jth example, and σ is the width of the Gaussian ker-
nel. Trepan sets σ to 1√

m
. One important shortcoming of this procedure is that

one estimates marginal distributions instead of a joint distribution and thus the
dependencies between the inputs are not properly taken into account. Trepan par-
tially overcomes this by estimating separate distributions for each node of the tree
hereby using only the training instances that reach the given node. This allows it
to capture some of the conditional dependencies since the estimated distributions
are conditionally dependent upon the outcome of the tests between the root node
and the given node. However, since this density estimation procedure is solely
based on original training data, it follows that the estimates become less reliable
for lower levels in the tree since they are based on less training data. To counter
this, Trepan uses a statistical test to see if the local distributions at a given node
are significantly different from the distributions at the ancestor node. If not, the
distributions of the ancestor node are used.

Trepan allows splits with at least M-of-N type of tests. Note that the test at
least 2 of {C1,C2,C3} is logically equivalent to (C1 And C2) Or (C1 And C3)
Or (C2 and C3). These M-of-N splits are constructed by using a heuristic search
procedure. First, the best binary split is selected according to the information gain
criterion of Equation 2.27. For discrete inputs this is based upon their distinct
values and for continuous inputs, the values are first sorted and the midpoints
between adjacent values of different classes are considered as potential thresholds.
The best binary test then serves as a seed for the M-of-N search process which
uses the following operators [167]:

• M-of-N+1: Add a new condition to the set.
E.g. 2 of {C1,C2} becomes 2 of {C1,C2,C3}.

• M+1-of-N+1: Add a new condition to the set and augment the threshold.
E.g. 2 of {C1,C2,C3} becomes 3 of {C1,C2,C3,C4}.

The heuristic search uses a beam-search method with a beam width of two meaning
that at each point the best two splits are retained for further examination. Again,
the information gain criterion is used to evaluate the splits. Finally, once an M-of-N
test has been constructed, Trepan tries to simplify it and investigates if conditions
can be dropped and/or M can be reduced without significantly degrading the
information gain.

Trepan uses one local and two global criteria to decide when to stop growing
the tree. For the local stopping criterion, Trepan constructs a confidence interval
around pc which is the proportion of instances belonging to the most common
class at the node under consideration. The node becomes a leaf when prob(pc <
1−ε) < α whereby α is the significance level and ε specifies how tight the confidence
interval around pc must be. Both values are set to 0.01 by default.

The first global criterion specifies a maximum on the number of internal nodes

88 Chapter 4. Neural Network Rule Extraction for Credit Scoring

of the tree and can be specified in advance by the user. Trees with a small number
of internal nodes are more comprehensible than large trees. The second global
criterion involves the use of a validation set, together with the size limit, to decide
upon the tree to return. This validation set is used to monitor the fidelity of each
of the trees in the construction sequence and the tree with the highest fidelity is
returned.

In [51], Trepan was applied to extract trees for exchange rate prediction. It was
shown that Trepan is able to extract compact and powerful decision trees when
compared to the C4.5 and the enhanced ID2-of-3 algorithm.

4.4 Neural Network Rule Extraction for Credit

Scoring

4.4.1 Experimental Setup

In this section, the neural network rule extraction techniques described in the
previous sections are applied to the German credit, Bene1 and Bene2 credit scor-
ing data sets discussed in chapter 3 [10, 11]. Again, each data set is randomly
split into two-thirds training set and one-third test set. The neural networks are
trained and rules are extracted using the training set. The test set is then used to
assess the predictive power of the trained networks and the extracted rule sets or
trees. Both the continuous and the discretized data sets will be investigated. The
continuous data sets will be analyzed using Neurolinear, Trepan and Nefclass. For
the discretized data sets we will use Neurorule, Trepan and Nefclass. Nefclass is a
neurofuzzy classifier generating fuzzy if-then rules. We defer the discussion on the
functioning of Nefclass to chapter 5 where also more experimental evidence will
be reported on fuzzy classification. We will also include C4.5 and C4.5rules as a
benchmark to compare the results of the rule extraction algorithms. As in chapter
3, we set the confidence level for the pruning strategy to 25% which is the value
that is commonly used in the literature.

All algorithms will be evaluated by their classification accuracy as measured
by the percentage correctly classified (PCC) observations and their complexity.
Since our main purpose is to develop intelligent credit scoring systems that are
both comprehensible and user-friendly, it is obvious that simple, concise rule sets
and trees are to be preferred. Hence, we will also take into account the complexity
of the generated rules or trees as a performance measure. The complexity will
be quantified by looking at the number of generated rules or the number of leave
nodes and total number of nodes for the Trepan trees. Note that the total number
of nodes of a tree is the sum of the number of internal nodes and the number of
leave nodes.

4.4. Neural Network Rule Extraction for Credit Scoring 89

Since the primary goal of neural network rule extraction is to mimic the decision
process of the trained neural network, we will also measure how well the extracted
rule set or tree models the behavior of the network. For this purpose, we will also
measure the fidelity of the extraction techniques which is defined as the percentage
of observations that the extraction algorithm classifies in the same way as the
neural network. More specifically, if we represent the classifications of the neural
network and the extraction algorithm as the confusion matrix of Table 4.5, then

NN classification

good bad
Rule extraction good a b
classification bad c d

Table 4.5: The fidelity measure.

the fidelity is defined as follows:

fidelity =
a+ d

a+ b+ c+ d
. (4.13)

For the Neurolinear and Neurorule analyses, we use two output units with linear
or logistic activation functions and the class is assigned to the output neuron with
the highest activation value (winner-takes-all). A hyperbolic tangent activation
function is used in the hidden layer.

Following Craven and Shavlik [53], we set the Smin parameter for the Trepan
analyses to 1000 meaning that at least 1000 observations are considered before
deciding upon each split or leave node class label. The maximum tree size is set
to 15 which is the size of a complete binary tree of depth four.

Since Trepan is a pedagogical tree extraction algorithm, we can apply it to
any trained neural network with arbitrary architecture. Hence, we will apply
Trepan to the same networks that were trained and pruned by Neurolinear and
Neurorule. This will allow us to make a fair comparison between a pedagogical
and a decompositional neural network rule extraction method.

For Nefclass, we will experiment with triangular, trapezoidal and bell-shaped
membership functions and use 2, 4 or 6 fuzzy sets per variable. We will also use
both Best rule learning and Best per Class rule learning with a maximum of 100
fuzzy rules.

4.4.2 Results for the Continuous Data Sets

Table 4.6 presents the results of applying the rule extraction methods to the con-
tinuous data sets. Before the neural networks are trained for rule extraction using

90 Chapter 4. Neural Network Rule Extraction for Credit Scoring

Neurolinear, all inputs xi, i = 1, ..., n are scaled to the interval [−1, 1] in the
following way:

xnewi = 2[
xoldi −min(xi)

max(xi)−min(xi)
]− 1. (4.14)

As explained in section 4.2, Neurolinear typically starts from a large, oversized
network and then prunes the irrelevant connections. These pruned neural networks
which are used by both Neurolinear and Trepan have 1 hidden unit for the German
credit and Bene2 data set and 2 hidden units for the Bene1 data set. This again
clearly illustrates that credit scoring is a problem which might be best approached
using simple classification models such as a neural network with one (or two)
hidden unit(s) and two output units. The pruning procedure indicates that there
is obviously no need to model more complex non-linearities by using more hidden
neurons. The pruned networks had 16 inputs for the German credit data set, 17
inputs for the Bene1 data set and 23 inputs for the Bene2 data set.

Neurolinear obtained 100% test set fidelity for the German credit and Bene2
data set and 99.9% test set fidelity for the Bene1 data set. The test set fidelity of
Trepan with respect to the neural networks which were also used by Neurolinear
is 91.31%, 87.60% and 85.31% for the German credit, Bene1 and Bene2 data set,
respectively. This clearly indicates that Neurolinear was able to extract rule sets
which better reflect the decision process of the trained neural networks than the
trees inferred by Trepan.

It can be observed from Table 4.6 that the rules and trees extracted by Neu-
rolinear and Trepan are both powerful and very concise when compared to the
rules and trees inferred by C4.5rules and C4.5. Neurolinear yields the best abso-
lute test set performance for all three data sets with a maximum of three oblique
rules for the Bene1 data set. For the German credit data set, Neurolinear per-
formed significantly better than C4.5rules according to McNemar’s test at the 1%
level. For the Bene1 and Bene2 data sets, the performance of Neurolinear was
not significantly different from C4.5rules at the 5% level. Neurolinear obtained
a significantly better performance than Nefclass on all three data sets. Nefclass
was never able to extract compact and powerful fuzzy rule sets for any of the data
sets. We found that its performance in terms of classification accuracy was very
dependent upon the specific parameter setting. Note also that for all three data
sets, Trepan obtained a better classification accuracy than C4.5 with much fewer
leaves and nodes.

Figure 4.3 and 4.4 depict the oblique rules that were extracted by Neurolinear
for the German credit and Bene1 data sets. Obviously, although the rules per-
fectly mimic the decision process of the corresponding neural networks, their com-
prehensive value is rather limited. They are basically mathematical expressions
which represent piece-wise linear discriminant functions. Hence, their usefulness
for building intelligent, user-friendly and comprehensible credit scoring systems
can be questioned.

4.4. Neural Network Rule Extraction for Credit Scoring 91

Data set Method PCCtrain PCCtest Complexity

German C4.5 82.58 70.96 37 leaves, 59 nodes
credit C4.5rules 81.53 70.66 13 propositional rules

Pruned NN 80.78 77.25 16 inputs
Neurolinear 80.93 77.25 2 oblique rules
Trepan 75.97 73.35 6 leaves, 11 nodes
Nefclass 71.20 70.36 16 fuzzy rules

Bene1 C4.5 89.91 68.68 168 leaves, 335 nodes
C4.5rules 78.63 70.80 21 propositional rules
Pruned NN 77.33 72.62 17 inputs
Neurolinear 77.43 72.72 3 oblique rules
Trepan 73.29 70.60 12 leaves, 23 nodes
Nefclass 67.53 66.19 8 fuzzy rules

Bene2 C4.5 90.24 70.09 849 leaves, 1161 nodes
C4.5rules 77.61 73.00 30 propositional rules
Pruned NN 76.05 73.51 23 inputs
Neurolinear 76.05 73.51 2 oblique rules
Trepan 73.36 71.84 4 leaves, 7 nodes
Nefclass 69.43 69.25 2 fuzzy rules

Table 4.6: Neural network rule extraction results for the continuous data sets.

Data set Method Fidtrain Fidtest

German Neurolinear 100 100
credit Trepan 89.78 91.31
Bene1 Neurolinear 99.81 99.90

Trepan 87.51 87.60
Bene2 Neurolinear 100 100

Trepan 82.94 85.31

Table 4.7: Fidelity rates of extraction techniques.

If [-24.59(Checking account)+ 29.66(Term)-16.45(Credit history)
-3.66(Purpose)-18.69(Savings account)+9.29(Installment rate)
-18.74(Personal status)+6.19(Property) -10.03(Age)
-9.36 (Other installment plans)-11.51(Housing)+7.15(Existing credits)
+16.68(Job)+2.046(Number of dependents)-4.54(Telephone)
-8.29(Foreign worker)] ≤ 0.15
Then Applicant=good
Else Applicant=bad

Figure 4.3: Oblique rules extracted by Neurolinear for German credit.

92 Chapter 4. Neural Network Rule Extraction for Credit Scoring

If [-12.83(Amount on purchase invoice)+13.36(Percentage of financial burden)
+31.33(Term)-0.93(Private or professional loan))-35.40(Savings account)
-5.86(Other loan expenses)+10.69(Profession)+10.84(Number of years since
last house move)+3.03(Code of regular saver)+6.68(Property)-6.02(Existing
credit info)-13.78(Number of years client)-2.12(Number of years since last loan)
-10.38(Number of mortgages)+68.45(Pawn)-5.23(Employment status)
-5.50(Title/salutation)] ≤ 0.31
Then Applicant=good

If [19.39(Amount on purchase invoice)+32.57(Percentage of financial burden)
-5.19(Term)-16.75(Private or professional loan)-27.96(Savings account)
+7.58(Other loan expenses)-13.98(Profession)-8.57(Number of years since
last house move)+6.30(Code of regular saver)+3.96(Property) -9.07(Existing
credit info)-0.51(Number of years client) -5.76(Number of years since last loan)
+0.14(Number of mortgages)+0.15(Pawn)+1.14(Employment status)
+15.03(Title/salutation)]≤ -0.25
Then Applicant=good

Default Class: Applicant=bad

Figure 4.4: Oblique rules extracted by Neurolinear for Bene1.

4.4.3 Results for the Discretized Data Sets

After discretization using the method of Fayyad and Irani, 15 inputs remained
for the German credit data set, 21 inputs for the Bene1 data set and 29 inputs
for the Bene2 data set. When representing these inputs using the thermometer
and dummy encoding, we ended up with 45 binary inputs for the German credit
data set, 45 binary inputs for the Bene1 data set and 105 inputs for the Bene2
data set. We then trained and pruned the neural networks for rule extraction using
Neurorule and tree extraction using Trepan. All these neural networks have hyper-
bolic tangent activation functions in the hidden layer and linear output activation
functions.

Figure 4.5 depicts the neural network that was trained and pruned for the
Bene1 data set. Only 1 hidden unit was needed with a hyperbolic tangent transfer
function. All inputs are binary, e.g. the first input is 1 if Term > 12 Months and
0 otherwise. Note that according to the pruning algorithm, no bias was needed to
the hidden neuron for the Bene1 data set. Of the 45 binary inputs, 37 were pruned
leaving only 8 binary inputs in the neural network. This corresponds to 7 of the
original inputs depicted in Table D.1 of the Appendix because the nominal Purpose
input has two corresponding binary inputs in the pruned network (Purpose= cash
provisioning and Purpose=second hand car).

4.4. Neural Network Rule Extraction for Credit Scoring 93

PSfrag replacements

Term > 12 Months

Purpose=cash provisioning

Purpose=second hand car

Savings Account > 12.40 Euro

Income > 719 Euro

Property=No

Years Client > 3 years

Economical Sector=Sector C

0.611

0.380

Applicant=good

Applicant=bad

-0.202

-0.287

-0.102

0.278

-0.081

-0.162

0.137

-0.289

0.457

-0.453

Figure 4.5: Neural network trained and pruned for Bene1.

The network trained and pruned for Bene2 had 1 hidden neuron with again no
bias input. Starting from 105 binary inputs, the pruning procedure removed 97 of
them and the remaining 8 corresponded to 7 of the original inputs. The network
for German credit had also only 1 hidden neuron but with a bias input. The
binarized German credit data set consists of 45 inputs of which 13 are retained,
corresponding to 6 of the original inputs of Table C in the Appendix.

Three things are worth mentioning here. First of all, observe how the pruned
networks for all three data sets have only 1 hidden neuron. These networks are
thus only marginally different from an ordinary logistic regression model. This
clearly confirms our earlier finding that, also for the discretized data sets, simple
classification models yield good performance for credit scoring. Furthermore, since
all networks have only 1 hidden neuron, the rule extraction process by Neurorule
can also be simplified. If we would cluster the hidden unit activation values by
sorting them, we would find two clusters corresponding to the two output classes.
Hence, instead of generating the rules relating the outputs to the clustered hidden
unit activation values and merge them with the rules expressing the clustered hid-
den unit activation values in terms of the inputs, we can generate the rules relating
the outputs to the inputs directly by using C4.5rules. Finally, also notice how the
binary representation allows to prune more inputs than with the continuous data
sets. This will off course facilitate the generation of a compact set of rules or tree.

Table 4.8 presents the performance and complexity of C4.5, C4.5rules, the
pruned NN, Neurorule, Trepan and Nefclass on the discretized credit scoring data
sets. It is important to remark here that the discretization process introduces
non-linear effects.

94 Chapter 4. Neural Network Rule Extraction for Credit Scoring

Data set Method PCCtrain PCCtest Complexity

German C4.5 80.63 71.56 38 leaves, 54 nodes
credit C4.5rules 81.38 74.25 17 propositional rules

Pruned NN 75.53 77.84 6 inputs
Neurorule 75.83 77.25 4 propositional rules
Trepan 75.37 73.95 11 leaves, 21 nodes
Nefclass 73.57 73.65 14 fuzzy rules

Bene1 C4.5 77.76 70.03 77 leaves, 114 nodes
C4.5rules 76.70 70.12 17 propositional rules
Pruned NN 73.05 71.85 7 inputs
Neurorule 73.05 71.85 6 propositional rules
Trepan 73.05 71.85 11 leaves, 21 nodes
Nefclass 68.97 67.24 8 fuzzy rules

Bene2 C4.5 82.80 73.09 438 leaves, 578 nodes
C4.5rules 77.76 73.51 27 propositional rules
Pruned NN 74.15 74.09 7 inputs
Neurorule 74.27 74.13 7 propositional rules
Trepan 74.15 74.01 9 leaves, 17 nodes
Nefclass 70.06 69.80 4 fuzzy rules

Table 4.8: Neural network rule extraction results for the discretized data sets.

Data set Method Fidtrain Fidtest

German Neurorule 99.70 98.80
credit Trepan 94.07 93.11
Bene1 Neurorule 100 100

Trepan 100 100
Bene2 Neurorule 99.71 99.79

Trepan 99.91 99.83

Table 4.9: Fidelity rates of extraction techniques.

When comparing Table 4.8 with Table 4.6 it can be seen that the test set
performance in most cases augments and that the discretization process did not
cause any loss of predictive power of the inputs.

For the German credit data set, Neurorule did not perform significantly better
than C4.5rules at the 5% level according to McNemar’s test. However, Neurorule
extracted only 4 propositional rules which is very compact when compared to
the 17 propositional rules inferred by C4.5rules. The Trepan tree obtained a
better classification accuracy than C4.5 with fewer leaves and nodes. Also Nefclass
obtained a good classification accuracy but it needed 14 fuzzy rules. The test set
fidelity of Neurorule is 98.80% whereas Trepan obtained 93.11% test set fidelity

4.4. Neural Network Rule Extraction for Credit Scoring 95

which indicates that Neurorule mimics the decision process of the network better
than Trepan.

For the Bene1 data set, Neurorule performed significantly better than C4.5rules
at the 5% level. Besides the gain in performance, Neurorule also uses only 6
propositional rules whereas C4.5rules uses 17 propositional rules. The rule set
inferred by Neurorule obtained 100% test set fidelity with respect to the pruned
neural network from which it was derived. Trepan gave better performance than
C4.5. Again, the tree was a lot more compact consisting of only 11 leaves and 21
nodes. The Trepan tree also achieved 100% test set fidelity with respect to the
pruned neural network. The high fidelity rates of Neurorule and Trepan indicate
that they were able to accurately approximate the decision process of the trained
and pruned neural network. Nefclass yielded a maximum test set accuracy of
67.24% with 8 fuzzy rules which is rather bad compared to the other extraction
algorithms.

For the Bene2 data set, the performance difference between Neurorule and
C4.5rules is not statistically significant at the 5% level using McNemar’s test.
However, the rule set extracted by Neurorule consists of only 7 propositional rules
which is a lot more compact than the 27 propositional rules induced by C4.5rules.
Note that the rules extracted by Neurorule yielded a better classification accuracy
than the network from which they were derived resulting in a test set fidelity of
99.79%. The tree inferred by Trepan has a very good performance and was again
compact when compared to the C4.5 tree. Trepan achieved 99.83% test set fidelity.
Again, Nefclass was not able to infer a compact and powerful fuzzy rule set.

Figure 4.6 and Figure 4.7 represent the rules extracted by Neurorule for the
German credit and Bene1 data sets whereas Figure 4.8 and Figure 4.9 represent
the extracted Trepan trees for both data sets. Notice that both Trepan trees
make extensively use of the M-of-N type of splits. Although these splits allow to
make powerful split decisions, their comprehensive value is rather limited. It is
very difficult to comprehend a Trepan tree and get a thorough insight into how
the inputs affect the classification decision when there are M-of-N type of splits
present. On the other hand, when looking at the rules extracted by Neurorule, it
becomes clear that these propositional rules are easy to interpret and understand.
These propositional rules are more comprehensible than the oblique rules extracted
by Neurolinear or the trees with M-of-N splits extracted by Trepan. However,
while propositional rules are an intuitive and well-known formalism to represent
knowledge, they are not necessarily the most suitable representation in terms of
structure and efficiency of use in every day business practice and decision-making.
Recent research in knowledge representation suggests that graphical representation
formalisms can be more readily interpreted and consulted by humans than a set of
symbolic propositional if-then rules [199]. In the following section, we will discuss
how the extracted sets of rules may be transformed into decision tables which
facilitate the efficient classification of applicants by the credit-risk manager.

96 Chapter 4. Neural Network Rule Extraction for Credit Scoring

If (Checking account 6= 4) And (Checking account 6= 3) And (Term = 1)
And (Credit history 6= 4) And (Credit history 6= 3)
And (Credit history 6= 2) And (Purpose 6= 8)
Then Applicant = bad

If (Checking account 6= 4) And (Checking account 6= 3)
And (Credit history 6= 4) And (Credit history 6= 3)
And (Credit history 6= 2) And (Term = 2)
Then Applicant = bad

If (Checking account 6= 4) And (Checking account 6= 3)
And (Credit history 6= 4) And (Purpose 6= 5) And (Purpose 6= 1)
And (Savings account 6= 5) And (Savings account 6= 4)
And (Other parties 6= 3) And (Term = 2)
Then Applicant = bad

Default class: Applicant = good

Figure 4.6: Rules Extracted by Neurorule for German credit.

If Term > 12 months And Purpose = cash provisioning And Savings
account ≤ 12.40 Euro And Years client ≤ 3 Then Applicant = bad

If Term > 12 months And Purpose = cash provisioning And Owns
property = No And Savings account ≤ 12.40 Euro Then Applicant = bad

If Purpose = cash provisioning And Income > 719 Euro And Owns
property = No And Savings account ≤ 12.40 Euro And Years client ≤ 3
Then Applicant = bad

If Purpose = second hand car And Income > 719 Euro And Owns
property = No And Savings account ≤ 12.40 Euro And Years client ≤ 3
Then Applicant = bad

If Savings account ≤ 12.40 Euro And Economical sector = Sector C
Then Applicant = bad

Default class: Applicant = good

Figure 4.7: Rules Extracted by Neurorule for Bene1.

4.4. Neural Network Rule Extraction for Credit Scoring 97

3 of {Credit history 6= 4, Term = 2, Checking account 6= 4}:
| 2 of {Credit history = 2, Savings account = 5, Purpose = 1}: Applicant = good
| Not 2 of {Credit history = 2, Savings account = 5, Purpose = 1}:
| | Checking account 6= 3:
| | | Other parties 6= 3:
| | | | 1 of {Credit history = 3, Savings account = 4}: Applicant = good
| | | | Not 1 of {Credit history = 3, Savings account = 4}:
| | | | | Purpose 6= 5:
| | | | | | Credit history 6= 2:
| | | | | | | Savings account 6= 3:
| | | | | | | | Savings account 6= 5:
| | | | | | | | | Purpose 6= 1: Applicant = bad
| | | | | | | | | Purpose = 1: Applicant = good
| | | | | | | | Savings account = 5: Applicant = good
| | | | | | | Savings account = 3: Applicant = good
| | | | | | Credit history = 2: Applicant = bad
| | | | | Purpose = 5: Applicant = good
| | | Other parties = 3: Applicant = good
| | Checking account = 3: Applicant = good
Not 3 of {Credit history 6= 4, Term = 2, Checking account 6= 4}: Applicant = good

Figure 4.8: Tree extracted by Trepan for German credit.

2 of{purpose 6= car, Savings account > 12.40 Euro, purpose 6= cash}:
| Economical sector 6= C: Applicant = good
| Economical sector = C:
| | Savings account ≤ 12.40Euro: Applicant = bad
| | Savings account > 12.40 Euro: Applicant = good
Not 2 of {purpose 6= car, Savings account > 12.40 Euro, purpose 6= cash}:
| 3 of {Economical sector 6= C, Term ≤ 12, Property = Yes, Years client > 3}:
| | Applicant = good
| Not 3 of {Economical sector 6= C, Term ≤ 12, Property = Yes, Years client > 3}:
| | purpose 6= cash:
| | | Income ≤ 719 Euro: Applicant = good
| | | Income > 719 Euro:
| | | | Property = Yes: Applicant = good
| | | | Property = No:
| | | | | Years client ≤ 3: Applicant = bad
| | | | | Years client > 3: Applicant = good
| | purpose = cash:
| | | Income ≤ 719 Euro:
| | | | Term ≤ 12 Months: Applicant = good
| | | | Term > 12 Months: Applicant = bad
| | | Income > 719 Euro: Applicant = bad

Figure 4.9: Tree extracted by Trepan for Bene1.

98 Chapter 4. Neural Network Rule Extraction for Credit Scoring

4.5 Visualizing the Extracted Rule Sets using De-

cision Tables

Decision tables provide an alternative way of representing data mining knowl-
edge extracted by e.g. neural network rule extraction in a user-friendly way [260].
Decision tables (DTs) are a tabular representation used to describe and analyze
decision situations (e.g. credit-risk evaluation), where the state of a number of
conditions jointly determines the execution of a set of actions. In our neural net-
work rule extraction context, the conditions correspond to the antecedents of the
rules whereas the actions correspond to the outcome classes (Applicant = good or
bad). A DT consists of four quadrants, separated by double-lines, both horizon-
tally and vertically (cf. Figure 4.10). The horizontal line divides the table into
a condition part (above) and an action part (below). The vertical line separates
subjects (left) from entries (right). The condition subjects are the criteria that

condition subjects condition entries

action subjects action entries

Figure 4.10: DT quadrants.

are relevant to the decision making process. They represent the attributes of the
rule antecedents about which information is needed to classify a given applicant
as good or bad. The action subjects describe the possible outcomes of the deci-
sion making process (i.e., the classes of the classification problem). Each condition
entry describes a relevant subset of values (called a state) for a given condition sub-
ject (attribute), or contains a dash symbol (‘-’) if its value is irrelevant within the
context of that column. Subsequently, every action entry holds a value assigned to
the corresponding action subject (class). True, false and unknown action values
are typically abbreviated by ‘×’, ‘-’, and ‘.’, respectively. Every column in the
entry part of the DT thus comprises a classification rule, indicating what action(s)
apply to a certain combination of condition states. If each column only contains
simple states (no contracted or irrelevant entries), the table is called an expanded
DT, whereas otherwise the table is called a contracted DT.

Table contraction can be achieved by combining logically adjacent (groups of)
columns that lead to the same action configuration. For ease of legibility, only
contractions are allowed that maintain a lexicographical column ordering, i.e., in
which the entries at lower rows alternate before the entries above them; see Figure
4.11 (Figure 4.12) for an example of an (un)ordered DT, respectively. As a result
of this ordering restriction, a tree structure emerges in the condition entry part of
the DT, which lends itself very well to a top-down evaluation procedure: starting
at the first row, and then working one’s way down the table by choosing from
the relevant condition states, one safely arrives at the prescribed action (class)
for a given case. The number of columns in the contracted table can be further

4.5. Visualizing the Extracted Rule Sets using Decision Tables 99

minimized by changing the order of the condition rows. It is obvious that a DT
with a minimal number of columns is to be preferred since it provides a more
parsimonious and comprehensible representation of the extracted knowledge than
an expanded DT. This is illustrated in Figure 4.11.

1. Owns property? yes no
2. Years client ≤ 3 >3 ≤ 3 >3
3. Savings amount low high low high low high low high

1. Applicant=good - × × × - × - ×
2. Applicant=bad × - - - × - × -

(a) Expanded DT

1. Owns property? yes no
2. Years client ≤ 3 >3 -
3. Savings amount low high - low high

1. Applicant=good - × × - ×
2. Applicant=bad × - - × -

(b) Contracted DT

1. Savings amount low high
2. Owns property? yes no -
3. Years client ≤ 3 >3 - -

1. Applicant=good - × - ×
2. Applicant=bad × - × -

(c) Minimum-size contracted DT

Figure 4.11: Minimizing the number of columns of a lexicographically ordered DT
[248].

1. Savings amount high - low low
2. Owns property? - yes no -
3. Years client - > 3 - ≤ 3

1. Applicant=good × × - -
2. Applicant=bad - - × ×

Figure 4.12: Example of an unordered DT.

Note that we deliberately restrict ourselves to single-hit tables, wherein columns

100 Chapter 4. Neural Network Rule Extraction for Credit Scoring

have to be mutually exclusive, because of their advantages with respect to verifi-
cation and validation [247]. It is this type of DT that can be easily checked for
potential anomalies, such as inconsistencies (a particular case being assigned to
more than one class) or incompleteness (no class assigned). The decision table
formalism thus facilitates the verification of the knowledge extracted by e.g. a
neural network rule extraction algorithm. What’s more, inspecting and validating
a DT in a top-down manner, as suggested above, should prove more intuitive,
faster, and less prone to human error, than evaluating a set of rules one by one.
Then, in a final stage, once the decision table has been approved by the expert, it
can be incorporated into a deployable decision support system [248].

We will use the Prologa4 software to construct the decision tables for the rules
extracted in section 4.4.3. Prologa is an interactive design tool for computer-
supported construction and manipulation of DTs [245]. With Prologa, knowl-
edge is acquired and verified in the form of a system of DTs. A powerful rule
language is available to help specify the DTs, and automated support is provided
for several restructuring and optimization tasks. Furthermore, to assist in the
implementation and integration of the modeled knowledge into various types of
application settings, a range of import / export interfaces is included (e.g., code
generation utilities), as well as a standard consultation environment, which allows
the user to apply the knowledge to a given problem case by means of a targeted
question / answer dialog, similar to that offered in a typical rule-based KBS shell.

Table 4.10 presents the properties of the DTs built for the rules extracted by
Neurorule and Trepan on all three credit scoring data sets. For the German credit
data set, the fully expanded decision table contained 6600 columns, enumerating
every possible combination of distinct attribute values (= 4 × 5 × 2 × 11 × 5 ×
3). For the Bene1 and Bene2 data sets, the expanded table consisted of 192
columns. Though hardly suitable for visual inspection at this point, the expanded
DTs proved computationally tractable given the input space reduction achieved
in the preceding stages of the knowledge discovery process. Subsequently, we
converted each of these expanded DTs into a more compact DT, by joining nominal
attribute values that do not appear in any rule antecedent into a common ‘other’
state, and then performing optimal table contraction. Considering the limited
number of inputs, we adopted a simple exhaustive search method (requiring only
a few seconds on a Pentium 4); a branch-and-bound approach to find the optimal
condition order is described elsewhere [246]. For the rules extracted by Neurorule,
we ended up with three minimum-size contracted DTs, consisting of 11, 14 and
26 columns for the German credit, Bene1 and Bene2 data sets, respectively. For
the Trepan trees, the minimized DTs had 9, 30 and 49 columns for the three data
sets (cf. Table 4.10). Note that we converted the Trepan trees to an equivalent
set of rules in order to make the decision tables. Since Nefclass gave rather bad
performance on all data sets, we did not include decision tables for the extracted
fuzzy rules. Remark however that decision tables can be easily adopted to model a

4http://www.econ.kuleuven.ac.be/tew/academic/infosys/research/Prologa.htm

4.5. Visualizing the Extracted Rule Sets using Decision Tables 101

set of descriptive fuzzy rules (fuzzy decision tables) [249, 260]. We also constructed
the decision tables for the rules induced by C4.5rules and found that these tables
were huge and impossible to handle because of the large number of generated rules
and unpruned inputs.

Interestingly, the size gains achieved by the DT contraction mechanism were,
in all cases, substantial, even with non-optimal condition orders. For example, for
the Bene1 credit data set, the maximum (average) contracted DT size amounted
to 48 (26), respectively, which is still well below the theoretical worst-case of 192
(non-contractable) columns. Figure 4.13 shows a bar plot of which the Y-axis
depicts the number of condition orders leading to the DT size indicated on the
X-axis for the German credit and Bene1 data sets.

10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

PSfrag replacements

Number of contracted DT columns

N
u
m
b
er

o
f
co
n
d
it
io
n
o
rd
er
s

(a) German credit

10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

PSfrag replacements

Number of contracted DT columns

N
u
m
b
er

o
f
co
n
d
it
io
n
o
rd
er
s

(b) Bene1

Figure 4.13: DT size distribution [9].

Figures 4.14 and 4.15 depict the contracted decision tables generated from the
rules extracted by Neurorule for the German credit and Bene1 data sets. Clearly,

102 Chapter 4. Neural Network Rule Extraction for Credit Scoring

their relative conciseness, combined with their top-down readability, is what makes
them a very attractive visual representation of the extracted knowledge. It is
important to note here that transforming a set of propositional rules into a DT
does not entail any loss of predictive accuracy; i.e., the decision tables depicted in
Figures 4.14 and 4.15 have exactly the same classification accuracy as the rules of
Figures 4.6 and 4.7 from which they were generated. Hence, as no anomalies are
indicated in the DT, the completeness and consistency of the extracted rules are
demonstrated.

Decision tables allow for an easy and user-friendly consultation in every day
business practice. Figure 4.16 presents an example of a consultation session in
Prologa. Suppose we try to work ourselves towards column 12 of the decision
table for Bene1 depicted in Figure 4.15. We start with providing the system
with the following inputs: Savings account ≤ 12.40 Euro, Economical sector =
other and Purpose = second hand car. At this point, the Term input becomes
irrelevant (indicated by ’-’) and hence, the system prompts for the next relevant
input which is the number of years the applicant has been a client of the bank.
We then indicate that the applicant has been a client for more than 3 years. The
other remaining inputs (Owns Property and Income) then become irrelevant which
allows the system to draw a conclusion: Applicant=good. This is illustrated in
Figure 4.17. For this particular applicant, the system needed only 4 of the 7 inputs
to make a classification decision. This example clearly illustrates that the use of
decision tables allows to ask targeted questions by neglecting the irrelevant inputs
during the decision process. It is precisely this property that makes decision tables
interesting tools for decision support in credit scoring.

4
.5
.
V
isu

a
lizin

g
th
e
E
x
tra

cted
R
u
le
S
ets

u
sin

g
D
ecisio

n
T
a
b
les

103
1. Checking account 1 or 2 3 or 4

2. Credit History 0 or 1 2 or 3 4 -

3. Term 1 2 1 2 - -

4. Purpose 1 or 5 8 other - - 1 or 5 8 or other - -

5. Savings account - - - - - - 1 or 2 or 3 4 or 5 - -

6. Other parties - - - - - - 1 or 2 3 - - -

1. Applicant=good - × - - × × - × × × ×

2. Applicant=bad × - × × - - × - - - -

1 2 3 4 5 6 7 8 9 10 11

Figure 4.14: Decision table for the rules extracted by Neurorule on German credit.

1. Savings Account ≤12.40 Euro > 12.40 Euro

2. Economical sector Sector C other -

3. Purpose - cash provisioning second-hand car other -

4. Term - ≤ 12 months > 12 months -

5. Years Client - ≤ 3 >3≤ 3 >3 ≤ 3 > 3

6. Owns Property - Yes No - - Yes No Yes No - - -

7. Income - - ≤ 719 Euro> 719 Euro - - - - - ≤ 719 Euro> 719 Euro - - -

1. Applicant=good - × × - × - × - × × - × × ×

2. Applicant=bad × - - × - × - × - - × - - -

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 4.15: Decision table for the rules extracted by Neurorule on Bene1.

104 Chapter 4. Neural Network Rule Extraction for Credit Scoring

Data set Extraction Number of columns Number of columns

method in expanded DT in minimized DT

German Neurorule 6600 11
credit Trepan 6600 9

Bene1 Neurorule 192 14
Trepan 192 30

Bene2 Neurorule 192 26
Trepan 192 49

Table 4.10: The number of columns in the expanded and reduced DTs for the
three data sets for the rules and trees extracted by Neurorule and Trepan.

Figure 4.16: Example consultation session in Prologa.

4.5. Visualizing the Extracted Rule Sets using Decision Tables 105

Figure 4.17: Classifying an applicant in Prologa.

106 Chapter 4. Neural Network Rule Extraction for Credit Scoring

4.6 Conclusions

Justifying and clarifying the decisions made by a credit scoring system is becoming
more and more a key success factor for its successful deployment and integration
into the daily credit decision environment. In the previous chapter, we have seen
that neural networks are amongst the best techniques for building scorecards.
However, their complex internal mathematical workings essentially turn them into
black box models which provide no humanly comprehensible explanation of the
classifications being made. In this chapter, we have shown how neural network rule
extraction techniques try to solve this problem by opening the neural network black
box and extracting a set of rules or trees which explain the behavior of the trained
network. This will provide the credit scoring expert with an explanation facility
to clarify why credit is either granted or denied. We believe neural network rule
extraction is a promising and interesting approach to make credit scoring systems
intelligent and increase their chances of being successfully deployed and effectively
used.

In this chapter, we have investigated the following neural network rule extrac-
tion techniques: Neurolinear, Neurorule, Trepan and Nefclass. Neurolinear and
Neurorule are both decompositional rule extraction algorithms whereas Trepan is
a pedagogical tree extraction algorithm. Neurolinear works with continuous data
and extracts oblique decision rules. On the other hand, Neurorule assumes bi-
narized data and infers propositional rules. Trepan is a tree extraction algorithm
extracting decision trees with M-of-N type of splits. We have also included Nefclass
as an example of a neurofuzzy classifier that infers descriptive fuzzy rules.

The experiments were conducted on the continuous and the discretized ver-
sions of the German credit, Bene1 and Bene2 data sets. We have evaluated both
the classification accuracy as measured by the percentage correctly classified ob-
servations, and the complexity of the extraction techniques. We believe the latter
criterion is very important since simple, parsimonious rule sets or trees are easier
to comprehend and thus easier to deploy and use in everyday business practice.
We have compared the performance of the extraction algorithms with the perfor-
mance of the well-known C4.5 and C4.5rules algorithms. It was found that, for the
continuous data sets, Neurolinear achieved a very good test set performance with
only a small number of oblique rules. However, the comprehensive value of these
rules is rather limited since they represent piece-wise mathematical discriminant
functions. For the discretized data sets, it was concluded that both Neurorule and
Trepan yielded a very good performance in terms of classification accuracy and
complexity. The propositional rules inferred by Neurorule are very comprehensible
whereas the Trepan trees are less easy to understand due to the M-of-N type of
splits. Nefclass never achieved a satisfying performance for both the continuous
and the discretized data sets.

Recent research in knowledge representation suggests that graphical represen-

4.6. Conclusions 107

tation formalisms can be more readily interpreted and consulted by humans than
a set of symbolic propositional if-then rules. Hence, in a next step, we investigated
how the rules and trees inferred by Neurorule and Trepan can be represented using
decision tables. Decision tables provide a tabular representation of the extracted
rules and trees. They have specialized contraction and minimization mechanisms
which allow for a powerful and parsimonious representation of the knowledge. We
showed that the contracted and minimized decision tables built for the rules and
trees extracted by Neurorule and Trepan on all 3 data sets were satisfactorily con-
cise and did not contain any anomalies. Furthermore, it was also demonstrated
that the use of decision tables allows one to ask targeted questions during the
consultation process by neglecting the irrelevant inputs. Hence, using decision
tables to represent extracted knowledge is an interesting and powerful alternative
for building user-friendly, intelligent credit scoring systems.

The rules extracted in this chapter are crisp in the sense that their antecedent
is either true or false. Fuzzy rules allow for more flexibility and express the an-
tecedents in terms of linguistic concepts modeled by fuzzy sets. In the following
chapter, we will investigate the use of genetic and neurofuzzy algorithms for fuzzy
rule extraction.

108 Chapter 4. Neural Network Rule Extraction for Credit Scoring

Chapter 5

Building Intelligent Systems

for Credit Scoring using

Fuzzy Rule Extraction

In this chapter, we study the use of fuzzy rule extraction techniques for credit scor-
ing1,2. In contrast to crisp rules, fuzzy rules are often described as being more
close to human reasoning since they are usually expressed in terms of linguistic
concepts. We will study two types of fuzzy rules: descriptive fuzzy rules and ap-
proximate fuzzy rules. Descriptive fuzzy rules all share a common, linguistically
interpretable definition of membership functions whereas approximate fuzzy rules
each have their own definition of membership functions. Many learning paradigms
have been suggested to extract fuzzy rules. We present two evolutionary fuzzy rule
learners, an evolution strategy that generates approximate fuzzy rules and a genetic
algorithm that extracts descriptive fuzzy rules. The performance of the evolution-
ary fuzzy rule learners is compared with that of Nefclass, a neurofuzzy classifier,
and a selection of other well-known classification algorithms on a number of data
sets including the Australian credit, German credit, Bene1 and Bene2 credit scor-
ing data sets.

1F. Hoffmann, B. Baesens, J. Martens, F. Put, J. Vanthienen, Comparing a Genetic Fuzzy
and a Neurofuzzy Classifier for Credit Scoring, International Journal of Intelligent Systems,
Volume 17(11), pp. 1067-1083, 2002.

2F. Hoffmann, B. Baesens, J. Martens, F. Put, J. Vanthienen, Evolutionary Algorithms for
Inferring Descriptive and Approximate Fuzzy Classification Rules, Submitted for Publication.

109

110 Chapter 5. Fuzzy Rule Extraction for Credit Scoring

5.1 Fuzzy Classification Rules

In chapter 4, we studied the use of crisp rule extraction techniques for credit
scoring. A key property of a crisp rule is that each condition of the rule antecedent
essentially models a crisp set. An example of a crisp set is:

Aj = {xj |xj > 30}, (5.1)

for each value of the variable xj whereby 30 is the cut-off point to decide if the
element belongs to the set. In contrast to crisp rules, fuzzy rules allow for more
flexibility by using fuzzy sets to express the conditions in the rule antecedent [265,
266]. A fuzzy set has no crisp boundary such that an element always belongs to it
up to some degree. The degree of belonging is then quantified by the membership
function of the fuzzy set. More formally, a fuzzy set Aj in xj is defined as a set of
ordered pairs:

Aj = {(xj , µA(xj))}, (5.2)

for each value of xj . µA(xj) is called the membership function of xj in Aj . The
membership function maps each value of the variable xj to a continuous member-
ship value between 0 and 1. Common types of membership functions are triangu-
lar, trapezoidal and Gaussian membership functions. Analogous to the classical
set operations of union, intersection and complement, Zadeh defined the fuzzy set
variants hereof in his seminal paper [265]. One of the advantages of using fuzzy
set theory is that it allows to model vague, linguistic concepts, which play an
important role in human thinking, in a natural way.

Example 5.1

Consider the linguistic concepts young, middle aged and old. Using crisp sets, one could
state that a person is young if his age is lower than 18, middle aged if his age is between
18 and 70 and old if his age is higher than 70. However, it is clear that the cut-points
are rather artificially chosen. E.g. a person of 2 years and somebody of 17 years are
both considered as young while there is a substantial age difference. Fuzzy sets allow
each person to be young to a certain extent, middle-aged to a certain extent and old to
a certain extent. Figure 5.1 provides an example of the use of trapezoidal membership
functions for expressing the fuzzy sets young, middle aged and old.

An elemental fuzzy classification rule is of the form:

Ri : If x1 isA1i And . . . xn isAni ThenClass = c, (5.3)

whereby xj denotes the jth input variable, Aji a fuzzy set associated to input
variable xj and c the class label of the rule. The elemental rule of 5.3 can now
be generalized to a disjunctive normal form (DNF) fuzzy rule where each input
variable can be related to several fuzzy sets which are combined using a disjunctive
operator [156]. For three input variables each partitioned into 5 fuzzy sets a DNF
fuzzy rule looks like

If x1 is {A12OrA14 }Andx2 is {A25}Andx3 is {A31OrA32}ThenClass = c
(5.4)

5.2. Using Fuzzy Rules for Credit Scoring 111

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

PSfrag replacements

young middle

aged

old

Figure 5.1: Fuzzy sets and corresponding membership functions for age.

One uses the t-norm to measure the rule activation for a particular instance x

µRi
(x) = µRi

({x1, ..., xn}) =
n

min
j=1

µAji
(xj). (5.5)

Note that we hereby use a min operator instead of a product operator. The
problem with the product operator is that for antecedents with many inputs, the
degree of rule activation can become very low. The instance x is then classified in
the class cmax

cmax = argmaxcm

∑

Ri|ci=cm

µRi
(x). (5.6)

When the fuzzy sets Aij are defined in exactly the same way in all fuzzy rules,
the rules are called descriptive fuzzy rules. This facilitates the interpretation of
the fuzzy sets as linguistic concepts such as old, hot, high, medium, Approxi-
mate fuzzy rules contain their own definition of membership functions rather than
referring to a commonly defined set of membership functions. This means that the
fuzzy sets Aij can no longer be interpreted as linguistic concepts but instead refer
to the characteristic functional relationship and corresponding parameters of the
membership function. The difference between descriptive and approximate fuzzy
rules is further clarified in Figure 5.2. It is obvious that approximate fuzzy rules
are less comprehensible and user friendly than descriptive fuzzy rules.

5.2 Using Fuzzy Rules for Credit Scoring

Not many attempts have been made in the literature to use fuzzy rule extraction
techniques for credit scoring.

112 Chapter 5. Fuzzy Rule Extraction for Credit Scoring

Approximate fuzzy rules:

If Term is trapezoidal(19.2 31.9 70.2 81.4) And Property is trapezoidal(8.4 8.4 9.4 9.5)

Then Applicant=bad

If Term is trapezoidal(26.1 26.1 110.1 118.1) And Purpose is trapezoidal(2.3 2.9 5.2 6.2)

And Monthly Payment is trapezoidal (2502.2 6774.4 21242.9 21242.9)

Then Applicant=bad

If Purpose is trapezoidal(1.8 4.9 9.6 14.9) And Term is trapezoidal(24.3 24.5 108.5 108.5)

And Percentage of Financial Burden is trapezoidal(0.4 0.4 0.8 0.9)

Then Applicant= bad

Descriptive fuzzy rules:

If Percentage of Financial Burden is large And Code Regular Saver is large

Then Applicant=bad

If Percentage of Financial Burden is small

Then Applicant=good

If Percentage of Financial Burden is medium And Code Regular Saver is large

Then Applicant=bad

Figure 5.2: Approximate fuzzy rules versus Descriptive fuzzy rules [120]. Note that
the approximate fuzzy rules are modeled using trapezoidal membership functions
which are characterized by 4 coordinate points.

In [179], Piramuthu studied the use of neurofuzzy systems for financial credit-
risk evaluation. The experiments were conducted using three real-life data sets:
the Australian credit data set (653 Obs.), a data set with the loan repayment
behavior of firms (48 Obs.) and two versions of a bankruptcy data set (162 Obs.
and 158 Obs.). For each data set, the performance of the neurofuzzy classifier was
compared with that of a neural network. The major conclusion was that neural
networks yielded somewhat better classification accuracy than their neurofuzzy
counterparts but the latter have the benefit of generating explanatory fuzzy rules,
which is very important in a credit risk context.

Malhotra and Malhotra [157] used the ANFIS (adaptive network-based fuzzy
inference system) method for credit scoring. ANFIS is a neurofuzzy-inference
system described in [127]. They combined the data from nine credit unions to form
a pooled data set with 790 observations with only three inputs: total payments
to total income, total debt to total income and the credit rating of the applicant.
To compare the performance of the classifiers, seven randomizations of the data
were generated and each randomization was split, in a stratified manner, into
a training set (500 Obs.) and a test set (290 Obs.). The performance of the

5.3. Evolutionary Algorithms for Inferring Fuzzy Rules 113

neurofuzzy method was compared with linear discriminant analysis using paired
t-tests. It was found that the neurofuzzy classifier statistically outperformed the
discriminant analysis classifier in classifying the bad loans but not in classifying
the good loans.

5.3 Evolutionary Algorithms for Inferring Descrip-

tive and Approximate Fuzzy Rules

5.3.1 Evolutionary Algorithms

Evolutionary algorithms are general-purpose search algorithms based upon the
principles of Darwinian evolution observed in nature [36, 38]. An evolutionary
algorithm typically starts from a randomly initialized population of individuals
(also called chromosomes), each representing a potential solution to the problem
at hand, and tries to mimic the well-known principle of survival of the fittest by
generating new, better populations using certain types of evolutionary operators.
The algorithm first makes a selection of the best individuals according to a fit-
ness function which reflects the quality of the solutions and which is dependent
upon the problem statement. In a next step, the individuals can be mutated or
recombined with other individuals. Mutation introduces new information into the
population whereas recombination allows for exchanging information between indi-
viduals. This process is then iterated until a pre-specified fitness values is obtained
or another stopping condition is met. The rough outline of a general evolution-
ary algorithm is given in Figure 5.3. Here t denotes the generation number and

t=0;
initialize(P(t));
evaluate(P(t));
while not terminate (P(t)) do
t=t+1;
P(t)=select(P(t-1));
recombine(P(t));
mutate(P(t));
evaluate(P(t));
end

Figure 5.3: Outline of an evolutionary algorithm [36, 38].

P (t) is the population at generation t. Two types of evolutionary algorithms
can be distinguished. A genetic algorithm uses a binary representation of the
individuals whereas evolution strategies consider vectors of real values to repre-
sent the individuals. Evolutionary algorithms are particularly well suited to deal

114 Chapter 5. Fuzzy Rule Extraction for Credit Scoring

with problems where no other specific techniques are available, e.g. multimodal,
noisy objective functions, constraint models, simulation models, Their major
advantage is that they have no assumptions with respect to the problem space.
Major drawbacks are that there is no guarantee to find an optimal solution within
a finite amount of time and that the parameters are often tuned in an ad-hoc
way. For more details on evolutionary algorithms, the reader is referred to, e.g.,
[36, 37, 38, 97].

5.3.2 Boosted Genetic Fuzzy Classification

Many learning paradigms have been suggested to learn fuzzy classification rules.
Amongst them, the use of evolutionary algorithms is becoming very popular. A
genetic fuzzy rule based system (GFRBS) uses evolutionary algorithms to adapt
an entire fuzzy rule base or its individual components [48]. Although most of the
work on GFRBS is concentrated in the area of fuzzy control, the focus has recently
shifted towards the generation of fuzzy classification rules [24, 47, 119, 121, 125].
The iterative rule learning (IRL) approach to GFRBS grows the fuzzy rule base in
an incremental way [100]. An evolutionary algorithm extracts the fuzzy rules one
by one from a set of training observations hereby removing all observations that
match the fuzzy rule. This process is then repeatedly invoked until a stopping
criterion is met. A post-processing stage can then further prune and refine the
rule base in order to augment its predictive power.

Figure 5.4 depicts the architecture of the boosted evolutionary classifier that
will be used in this chapter. The classifier combines the ideas of boosting and
iterative fuzzy rule learning into a coherent framework. After having generated
a fuzzy rule, the classifier invokes a boosting scheme which changes the training
set distribution. This scheme essentially reweights the training set observations
by assigning higher weights to the instances that are currently misclassified or un-
covered by the newly generated fuzzy rule. In this way, a bias is created towards
the generation of fuzzy rules that try to complement the current set of fuzzy rules
and correct their deficiencies. It is precisely this bias that will make the post-
processing faze redundant. All extracted fuzzy rules are then aggregated into a
single, composite classifier [91]. The boosting mechanism works especially well
when the rule generation algorithm is an unstable classifier, i.e. a classifier which
is particularly sensitive to changes in the training set distribution. Boosting algo-
rithms for fuzzy classification systems have been previously proposed in [118, 132].
The architecture of Figure 5.4 will be used to generate both the approximate and
the descriptive fuzzy rules. However, both will use another genetic representation
and evolutionary algorithm, as will be described in the following subsection.

5.3. Evolutionary Algorithms for Inferring Fuzzy Rules 115

PSfrag replacements

training

instances

evolutionary

fuzzy system

fuzzy

rule base

boosting

algorithm

adapt

distribution of

training instances

generate
fuzzy
rule

add

rule

adapt fuzzy

rule strength

classification
of training

instances

Figure 5.4: Architecture of a boosted evolutionary classifier.

5.3.3 Genetic Representation for Approximate and Descrip-

tive Fuzzy Rules

A genetic algorithm is used to generate the descriptive DNF fuzzy rules. The latter
are encoded using bit strings, in which each bit denotes the presence or absence
of a linguistic term Aij in the rule antecedent [156]. The rule in equation 5.4
would be encoded by the bitstring 01010|00001|11000 where the 1s correspond to
the A12, A14, A25, A31, A32. The number of fuzzy rules required grows rapidly with
the number of input variables. In order to avoid an explosion of the number rules,
the coding scheme provides for wildcard variables that are omitted from the rule
antecedent. The chromosome contains an additional bit-string S = {s1, . . . , sn} in
which the bit si indicates the presence or absence of the input variable xi in the
rule antecedent irrespective of the bits referring to the linguistic labels. Adaptation
of the bit-string S enables the genetic algorithm to identify fuzzy rules with those
inputs that best discriminate among the different classes, irrespective of the bits
referring to the linguistic labels. Each chromosome also contains an additional bit
representing the class label of the rule. The antecedent part of the chromosomes
in the first generation is initialized by randomly picking a training instance. The
bits corresponding to labels that best match the instance are set to 1, neighboring
bits are chosen randomly and the remaining bits are set to 0. The initial rule class
is determined by the majority class of those training instances covered by the rule
antecedent. The input domains are partitioned into five respectively seven equally
distributed triangular fuzzy sets which degrees of membership sum up to one.

Approximate fuzzy rules each have their own definition of membership func-
tions. The fuzzy sets Ai thus no longer refer to linguistic concepts but instead
typically vary from rule to rule. Equation 5.3 presents an example of the type of
approximate rules that will be generated. Note that the approximate rules are less
expressive than their descriptive counterparts since the latter allow for disjunctions
in the antecedent part. The chromosomes are now real-valued vectors representing
the characteristic points of the trapezoidal membership functions: the left most
characteristic point ai and the distances between the remaining points δ1i = bi−ai,

116 Chapter 5. Fuzzy Rule Extraction for Credit Scoring

δ2i = ci − bi and δ3i = di − ci (see Figure 5.5). The δji are restricted to positive
values only such that the points ai, bi, ci, di do not change their order. The en-
tire rule chromosome then concatenates the characteristic points of the fuzzy sets
A1, . . . , An into one real-valued vector a1, δ

1
1 , δ

2
1 , δ

3
1 , . . . , an, δ

1
n, δ

2
n, δ

3
n. Again the

bit-string S = {s1, . . . , sn} is added to the chromosome to allow the algorithm to
perform input selection. Due to the continuous nature of the optimization prob-
lem, an evolution strategy rather than a genetic algorithm is used for optimizing
the fuzzy classification rules.
PSfrag replacements

Ai

ai δ1i δ2i δ3i

x

µ

ai bi ci di

0

Figure 5.5: Coding of trapezoidal fuzzy sets.

5.3.4 Fitness Function

We will use the same fitness function to evaluate both the descriptive and approx-
imate fuzzy rules. In [99], the authors propose the following optimization criteria
to evaluate the quality of a fuzzy rule:

• class coverage;

• rule coverage;

• k-consistency.

It is important to note that each training example xi has a corresponding weight
wi reflecting the frequency of the example in the training set. These weights will be
modified by the boosting algorithm described in the next subsection. The fitness
function will take into account these weights such that instances with large weights
contribute more to the fitness than instances with small weights.

The first component of the fitness function is the class coverage defined as the
ratio between the number of training instances covered by the rule Ri and the

5.3. Evolutionary Algorithms for Inferring Fuzzy Rules 117

overall number of training instances carrying the same class label ci,

f1 =

∑

k|ck=ci
wkµRi

(xk)
∑

k|ck=ci
wk

. (5.7)

The second criterion is the rule coverage and is related to the overall fraction
of instances covered by the rule, irrespective of the class label,

n =

∑

k|ck=ci
wkµRi

(xk)
∑

k wk
. (5.8)

The idea is that a rule should cover a significant portion kcov of the training
examples instead of representing outliers in the training set

f2 =

{

1 : n > kcov
n

kcov
otherwise

(5.9)

with kcov ≈ 0.2 . . . 0.5 decreasing with an increasing number of classes. The reason
is that with more classes it is harder to find rules that cover a significant fraction
of all instances. For example, if you have a classification problem with M classes,
each having the same number of instances, then a rule that perfectly classifies all
instances of one class and none of the other M − 1 classes has a coverage of 1/M .
A reasonable choice would then be kcov = 1/M , as no rule can cover more than
that fraction of instances without covering other (false) instances.

The number of correctly n+c and incorrectly n−c classified weighted instances
covered by the rule Ri is approximated as

nc
+ =

∑

k|ck=ci

wkµRi
(xk) (5.10)

nc
− =

∑

k|ck 6=ci

wkµRi
(xk)

Rule consistency demands that a rule covers a large number of correct instances
and a small number of incorrect examples. Therefore, the fitness for the k-
consistency of a rule is defined by the ratio of these numbers

f3 =

{

0 : nc
+ × k < n−c

nc
+−n−c /k

n+
c

: otherwise
(5.11)

where the parameter k ∈ [0, 1] determines the maximal tolerance for the error
made by an individual rule [98]. The precise value of k depends on the problem
complexity. Typically, k increases with an increasing overlap between classes. For
binary classification problems a value of k = 1 was assumed.

118 Chapter 5. Fuzzy Rule Extraction for Credit Scoring

The individual fitness criteria fi are normalized to [0, 1] and the overall fitness
of a rule is given by the product

f =

3
∏

i=1

fi. (5.12)

5.3.5 The Boosting Algorithm

The boosting scheme follows the idea of the iterative rule learning scheme and
combines it with a fuzzy variant of the AdaBoost algorithm originally proposed in
[91]. The basic idea of boosting is to repeatedly train a weak classifier on various
distributions of the training data. After a fuzzy rule has been generated, one
changes the distribution of training instances according to the observed error of
the last generated classifier on the training set. The overall classification results
from the aggregated votes of the individual classifiers.

If the learning algorithm can handle fractional training instances, it is not
necessary to generate a new training set from a (modified) distribution. Instead,
the instances obtain a weight wk that specifies the relative importance of the k-
th training instance. This weight can be interpreted as if the training set would
contain wk identical copies of the training example (xk, ck). Correctly classified
instances (xk, ck) are down-weighted, such that the next iterations of the learning
algorithm focuss on the seemingly more difficult instances.

Initially, all training examples obtain the weight wk = 1. The boosting algo-
rithm repeatedly invokes the genetic fuzzy rule generation method on the current
distribution of training examples. Notice, that instances with large weights wk

contribute more strongly to the fitness of a fuzzy rule in equations 5.7, 5.9, and
5.11.

The boosting algorithm computes the error E(Rt) of the fuzzy rule Rt gen-
erated in iteration t. Each descriptive or approximate fuzzy classification rule
constitutes an incomplete, weak classifier. Incomplete in the sense that the rule
only classifies instances covered by its antecedent but provides no classification for
training examples that do not match the antecedent. Therefore, the classification
error E(Rt) of a fuzzy rule Rt is weighted not only by the weight wk but also by
the degree of matching µRt

(xk) between the k-th training instance (xk, ck) and
the rule antecedent

E(Rt) =

∑

k|ck 6=ct
wkµRt

(xk)
∑

k wkµRt
(xk)

. (5.13)

In other words, the objective of the fuzzy rule generation method is to find clas-
sification rules that best describe the current distribution of training examples.

Assume that the rule generation algorithm identified Rt as the best rule for
the distribution wk(t) at iteration t. For instances (xk, ck) correctly classified by

5.3. Evolutionary Algorithms for Inferring Fuzzy Rules 119

Rt the weight is reduced by a factor βk, such that incorrectly classified instances
gain relatively in importance in the next invocation of the genetic rule learner,

wk(t+ 1) =

{

wk(t) if ci 6= ck

wk(t)× β
µRt (xk)

k if ci = ck.
(5.14)

The factor

βk =
E(Rt)

1− E(Rt)
(5.15)

depends on the error E(Rt) of the fuzzy rule. Effectively, examples that are classi-
fied correctly and match the rule antecedent are down-weighted, and misclassified
or uncovered examples keep their original weights. In other words, instances that
are correctly classified get lower weights and the weight reduction will be higher
when the rule activation is higher (for µRt

(xk) = 0, the weight will remain un-
changed). Thereby, the boosting algorithm increases the relative weight of those
examples which are hard to learn for the genetic fuzzy system.

5.3.6 Fuzzy Classifier Aggregation

In order to classify unknown examples, the votes of the fuzzy rules Rt on a new
instance x are aggregated into an overall classification [47, 124]. The classification
proposed by a single rule is weighted according to the rule’s classification accuracy
expressed by

βt =
E(Rt)

1− E(Rt)
. (5.16)

Rather than to pursue a winner-takes-all approach in which the rule with the
highest matching degree dictates the ultimate classification, all rules contribute to
the overall classification. The vote of rule Rt on x is weighted by the rule activation
µRt

(x) and the factor log (1/βt). The weight log (1/βt) can be interpreted as the
confidence in the fuzzy rule Rt. The boosting classifier then outputs the class label
cmax that maximizes the sum

cmax = argmaxcm

∑

Rt|ct=cm

log (1/βt)µRt
(x). (5.17)

Intuitively, the most accurate and most active rules have the largest influence on
the classification. Unfortunately, confidence rated fuzzy rules are less intuitive,
in particular if several rules with possibly conflicting classes trigger for the same
input. In that case, the outcome of the aggregated classification, not only depends
on how well the rules match the instance, but also on their relative confidence.

120 Chapter 5. Fuzzy Rule Extraction for Credit Scoring

5.4 Neural Network Fuzzy Rule Extraction using

Nefclass

The category of neural network fuzzy rule extraction techniques is often referred
to as neurofuzzy systems. Basically, these systems encompass methods that use
learning algorithms from neural networks to tune the parameters of a fuzzy sys-
tem. Although the interest in neurofuzzy systems originates mainly from the field
of control theory, neurofuzzy methods may also be used for purposes of pattern
classification or regression. Some of the most well-known neurofuzzy pattern recog-
nition systems include FuNe [103], Fuzzy RuleNet [238], Anfis [127], Fuzzy Artmap
[42] and Nefclass [170, 171, 172]. In this section, we will further elaborate on Ne-
fclass since it is a neurofuzzy classifier that generates comprehensible descriptive
fuzzy rules.

Nefclass has the architecture of a three-layer fuzzy perceptron whereby the
first layer U1 consists of input neurons, the second layer U2 of hidden neurons and
the third layer U3 of output neurons. The difference with a classical multilayer
perceptron (cf. section 2.1.9) is that the weights now represent fuzzy sets and that
the activation functions are now fuzzy set operators. The hidden layer neurons
represent the fuzzy rules and the output layer neurons the different classes of the
classification problem with 1 output neuron per class. When a training pattern is
propagated through the perceptron, the activation value of the hidden unit R and
the output unit c are typically computed as follows:

aR = min
xj∈U1

{W (xj , R)(xj)},

ac =

∑

R∈U2
W (R, c)aR

∑

R∈U2
W (R, c)

or alternatively : ac = max
R∈U2

{aR},

(5.18)

whereby W (xj , R) is the fuzzy weight between input unit xj and hidden rule unit
R and W (R, c) is the weight between hidden rule unit R and output class unit
c. Nefclass sets all weights W (R, c) to 1 for semantical reasons. Depending on
the classification problem at hand, the output activation function can be just a
simple maximum-operator. After an observation has been propagated through the
network, its predicted class is assigned according to the output neuron with the
highest activation value (winner-takes-all). Figure 5.6 depicts an example of a
Nefclass network. The fuzzy rule corresponding to rule unit R1 can then, e.g., be
expressed as follows:

If x1 is small And x2 is big Then Class = C1, (5.19)

where the fuzzy sets small and big have membership functions µ
(1)
1 and µ

(2)
1 , re-

spectively.

5.4. Neural Network Fuzzy Rule Extraction using Nefclass 121

PSfrag replacements

R1 R2 R3 R4

C1 C2

x1 x2

1 1 1 1

µ
(2)
1

µ
(2)
2

µ
(1)
1

µ
(1)
2

µ
(1)
3

µ
(2)
3

Figure 5.6: Example Nefclass network.

In order to generate descriptive fuzzy rules, rather than approximate fuzzy
rules, Nefclass enforces all connections representing the same linguistic label (e.g
x1 is small) to have the same fuzzy set associated with them. E.g., in Figure 5.6,

the fuzzy set having membership function µ
(1)
1 is shared by the rule units R1 and

R2 and thus has the same definition in both fuzzy rules. When this constraint was
not imposed, the same linguistic label could be represented by different fuzzy sets
which would lead to the generation of approximate fuzzy rules and thus decrease
the interpretability and comprehensibility of the classifier.

Nefclass allows one to model a priori domain knowledge before starting to learn
the various parameters or it can also be created from scratch. In both cases, the
user must start by specifying the fuzzy sets and membership function types for all
inputs which can be trapezoidal, triangular, Gaussian or List. The latter type of
membership function is especially well-suited for dealing with nominal variables
[170].

Nefclass starts by determining the appropriate number of rule units in the
hidden layer. Suppose we have a data set D of N data points {(xi,yi)}Ni=1,with
input data xi ∈ IRn and target vectors yi ∈ {0, 1}m for an m-class classification

problem. For each input xj ∈ U1, qj fuzzy sets µ
(j)
1 , ..., µ

(j)
qj are defined. The rule

learning algorithm then proceeds as follows.

122 Chapter 5. Fuzzy Rule Extraction for Credit Scoring

1. Select the next pattern (xi,yi) from D.

2. For each input unit xj ∈ U1, j = 1, ..., n find the membership function µ
(j)
lj

such that
µ
(j)
lj

(xj) = max
l∈{1,...,qj}

{µ(j)l (xj)}. (5.20)

3. If there is no rule node R with:

W (x1, R) = µ
(1)
l1
, ..,W (xn, R) = µ

(n)
ln

(5.21)

then create such a node and connect it to output class node p if yi(p) = 1.

4. Go to step 1 until all patterns in D have been processed.

Obviously, the above procedure will result in a large number of hidden neurons and
fuzzy rules. This can be remedied by specifying a maximum number of hidden
neurons and keeping only the first k rule units created (Simple rule learning).
Alternatively, one could also keep the best k rules (Best rule learning) or the best
b k
mc rules for each class (Best per Class rule learning).

Once the number of hidden units has been determined, the fuzzy sets between
the input and hidden layer are tuned to improve the classification accuracy of the
network. Hereto, Nefclass employs a fuzzy variant of the well-known backpropaga-
tion algorithm to tune the characteristic parameters of the membership functions
(see [170, 171, 172] for more details).

In a third step, Nefclass offers the possibility to prune the rule base by removing
rules and variables based on a simple greedy algorithm which uses the following
heuristics.

• pruning by correlation
inputs that have only a low correlation with the output may be deleted

• pruning by classification frequency
rules that are responsible for the classification of only a few cases may be
removed from the rule base

• pruning by redundancy
the linguistic term that yields the minimal degree of membership in an active
rule in the least number of cases is deleted

• pruning by fuzziness
all linguistic terms that correspond to the fuzzy set with the largest support
are removed from all rules

The pruning strategies are executed in the above order. After each step, Nefclass
retunes the fuzzy sets, and makes the pruning permanent if the new rule base yields
a better accuracy. The goal of this pruning is to improve the comprehensibility of
the created classifier.

5.5. Empirical Evaluation 123

5.5 Empirical Evaluation

5.5.1 Data sets and Experimental Setup

Table 5.1 represents the characteristics of the data sets that will be used to evaluate
the different classifiers. The Breast cancer, Pima, Australian credit and German

Data set size Inputs
Total Continuous Nominal

Breast cancer 698 9 9 0
Pima 768 8 8 0
Australian credit 690 14 6 8
German credit 1000 20 7 13
Gauss 4000 2 2 0
Bene1 3123 27 13 14
Bene2 7190 28 18 10

Table 5.1: Characteristics of data sets.

credit data set are retrieved from the UCI repository (http://kdd.ics.uci.edu/).
The Gauss data set is an artificial data set generated from two two-dimensional
Gaussian distributions centered at (0, 0) and (2, 0) with covariance matrices I and
4I. The Bene1 and Bene2 data sets are two real-life credit scoring data sets that
have been obtained from major Benelux (Belgium, The Netherlands and Luxem-
bourg) financial companies. All these data sets will be used to train the evolu-
tionary and neurofuzzy classifiers and compare their classification accuracy with a
selection of well-known classification algorithms such as Fisher discriminant anal-
ysis (Fisher), linear discriminant analysis (LDA), artificial neural networks (ANN)
and C4.5 decision trees. The Fisher, LDA and ANN classifiers are implemented
using the PRTools MatlabTM toolbox3. In order to compute the classification ac-
curacy for the Breast cancer, Pima, Australian credit, German credit, Gauss and
Bene1 data sets, we will generate 10 randomizations and split each of them into
a training set and test set. Each classifier will then be trained and evaluated 10
times and its accuracy will be averaged. The averaged performances can then be
compared using paired t-tests (see 2.56). For the Bene2 data set, we will use a
single training set/test set since it has a large number of observations. We will
then use McNemar’s test to test the performance differences (see 2.61). We will
also use this data set to illustrate some of the extracted fuzzy rule sets.

For the descriptive genetic and neurofuzzy classifiers, we experimented with 5
and 7 fuzzy sets for the continuous attributes. The fuzzy sets are of triangular
shape and uniformly partition the universe of discourse such that the membership

3http://www.ph.tn.tudelft.nl/∼bob/PRTOOLS.html

124 Chapter 5. Fuzzy Rule Extraction for Credit Scoring

degrees sum up to one. For the approximate and descriptive genetic classifiers, the
boosting scheme invoked the evolutionary algorithm for rule generation 20 times,
generating an equivalent number of rules. In general, the classification error for the
test set converged after about 15 rules at which time usually each training example
was at least covered by one fuzzy rule. The train and test set classification rates
are reported as the average performance of the aggregated classifiers composed of
16 up to 20 rules. The evolutionary rule generation scheme evolved a population
of 200 individuals over 50 generations of which the overall best solution was added
to the aggregated classifier. The chromosome length depends on the number of
attributes and in the descriptive case also on the number of fuzzy sets. The
genetic algorithm used fitness proportionate selection and fitness scaling, whereas
the evolution strategy operated with µ, λ selection in which the 20 best individuals
served as parents for the next generation of offspring.

For the Nefclass classifier, we used triangular fuzzy sets, best per class rule
learning and set the maximum number of fuzzy rules generated to 50. We re-
port both an optimistic and a pessimistic accuracy estimate. The optimistic es-
timate classifies all unclassified observations into the majority class whereas the
pessimistic estimate considers them as misclassified.

5.5.2 Results

Table 5.2 reports the classification accuracy of all classifiers on the 7 data sets.
The best average test set classification accuracy is underlined and denoted in bold
face for each data set. Test set performances that are not significantly different at
the 5% level from the best performance with respect to a one-tailed paired t-test
are tabulated in bold face. Statistically significant underperformances at the 1%
level are emphasized. Performances significantly different at the 5% level but not
a the 1% level are reported in normal script.

It can be observed from Table 5.2 that the Fisher, ANN, and the GFS Desc 7 FS
classification techniques each achieved one time the best performance and the LDA
and GFS Approx classification techniques each two times. Generally speaking, the
GFS Desc 7 FS classifier performed only slightly better than the GFS Desc 5 FS
classifier in absolute terms. The performance of the GFS Approx classifier was in
line with that of its descriptive variants. Except for the Breast cancer and German
credit data set, the GFS classifiers do not perform significantly worse than the
standard classification schemes. The reason for the relative poor performance of
the GFS classifiers on the Breast cancer and German credit data sets is related
to the fitness criterion rule consistency in equation 5.11, for which throughout the
experiments the default parameter value k = 1 was assumed. The parameter k
should be adjusted to the difficulty of the classification problem, namely a small
value of k if classes are easily separable as in the Breast Cancer data set, and a
larger value of k if there is a significant overlap among classes as for example in the

5
.5
.
E
m
p
irica

l
E
va
lu
a
tio

n
125

Technique Breast Cancer Gauss Pima Australian credit German credit Bene1 Bene2
train test train test train test train test train test train test train test

Fisher 96.6(0.4) 95.9(0.9) 76.1(0.7) 76.1(0.5) 77.8(0.9) 77.3(0.8) 86.0(0.8) 86.7(1.5) 77.1(0.8) 76.3(1.6) 72.9(0.2) 71.3(0.9) 73.9 72.7

LDA 96.6(0.4) 95.8(0.9) 76.1(0.7) 76.1(0.5) 77.9(1.1) 77.3(0.7) 86.0(0.8) 86.7(1.6) 77.5(0.8) 76.0(1.4) 72.7(0.5) 71.2(0.8) 74.4 73.2

ANN 97.9(0.8) 96.2(0.8) 78.9(1.5) 78.4(1.4) 77.4(3.0) 75.0(3.0) 90.5(1.2) 86.0(2.1) 81.9(1.3) 74.1(1.9) 75.9(1.0) 71.5(1.0) 73.5 72.8

C45 98.6(0.8) 93.5(1.0) 81.1(0.6) 79.0(0.8) 86.1(4.5) 71.6(4.2) 90.8(1.5) 85.9(2.1) 84.9(2.5) 72.4(1.3) 85.8(1.4) 70.9(1.2) 89.2 70.2

GFS Approx 94.9(1.9) 92.7(2.1) 81.1(0.6) 79.4(0.8) 84.0(0.8) 75.9(1.6) 87.1(1.4) 84.6(2.6) 80.4(1.0) 73.3(2.2) 74.6(0.4) 72.9(1.2) 75.2 73.3

GFS Desc 5 FS 91.0(0.6) 89.3(0.8) 79.6(0.6) 79.6(0.5) 80.6(1.3) 76.0(1.9) 88.9(0.9) 85.9(2.2) 80.3(1.0) 73.2(2.0) 73.6(0.4) 72.1(1.2) 75.1 72.3

GFS Desc 7 FS 93.5(0.6) 91.0(1.2) 80.4(0.4) 80.3(0.4) 81.4(1.9) 76.6(1.7) 89.4(1.1) 85.8(2.1) 80.2(0.8) 73.4(1.6) 73.8(0.6) 72.9(0.9) 74.8 73.3

Nefclass pess 5 FS 94.1(1.4) 93.2(1.3) 76.9(1.5) 76.6(1.3) 73.5(2.4) 72.7(3.8) 85.0(0.7) 86.5(1.4) 70.0(2.6) 70.5(3.1) 49.9(9.7) 51.0(11) 70.6 70.1

Nefclass opt 5 FS 94.2(1.4) 93.3(1.4) 77.6(1.9) 77.3(1.8) 74.6(0.8) 73.8(2.2) 85.0(0.7) 86.5(1.4) 70.2(2.6) 70.6(3.3) 67.3(7.7) 68.6(2.1) 71.2 70.6

Nefclass pess 7 FS 92.4(1.4) 91.4(1.9) 74.9(0.7) 74.9(1.1) 73.4(2.1) 72.6(3.1) 85.0(0.7) 86.5(1.4) 70.7(2.2) 70.0(3.0) 50.8(16) 49.7(16) 68.7 69.4

Nefclass opt 7 FS 92.4(1.3) 91.5(1.9) 75.6(0.5) 75.3(1.4) 74.9(1.1) 74.2(1.7) 85.0(0.7) 86.5(1.4) 71.5(1.5) 70.7(2.3) 69.1(3.9) 68.6(3.6) 69.4 70.3

Table 5.2: Classification accuracy of the evolutionary and neurofuzzy classifiers versus a selection of well-known classification
algorithms.

126 Chapter 5. Fuzzy Rule Extraction for Credit Scoring

credit data sets. For the Breast Cancer data set, a lower value of k would put a
stronger emphasis on rule consistency relative to the weight given to the two other
criteria rule and class coverage. Except for the Australian credit data set, both the
C4.5 and Nefclass classifiers always achieved a statistically inferior classification
performance at the 1% level. For the Nefclass classifier, we also experimented with
other parameter settings (e.g. trapezoidal fuzzy sets, maximum 100 fuzzy rules,
best rule learning) but found that its performance was highly dependent upon
the specific parameter setting. Figure 5.7 shows the evolution of the training and

0 2 4 6 8 10 12 14 16 18 20
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

PSfrag replacements

number of rules

c
la

s
s
if
ic

a
t
io

n
a
c
c
u
r
a
c
y

training
test

(a) Approximate Fuzzy

0 2 4 6 8 10 12 14 16 18 20
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

PSfrag replacements

number of rules

c
la

s
s
if
ic

a
t
io

n
a
c
c
u
r
a
c
y

training
test

(b) Descriptive Fuzzy 5 FS

0 2 4 6 8 10 12 14 16 18 20
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

PSfrag replacements

number of rules

c
la

s
s
if
ic

a
t
io

n
a
c
c
u
r
a
c
y

training
test

(c) Descriptive Fuzzy 7 FS

Figure 5.7: Evolution of the training and test set classification accuracy with the
number of fuzzy rules generated for the evolutionary fuzzy classifiers on the Bene2
data set.

test set classification accuracy with the number of fuzzy rules generated for the
evolutionary fuzzy classifiers on the Bene2 data set. The low classification rate for
a small number of rules is due to the fact that a substantial number of instances
is initially not covered by any rule and are therefore counted as misclassified. The

5.5. Empirical Evaluation 127

figure clearly illustrates that for all three evolutionary classifiers, the classification
accuracy on both the training set and test set stagnates after approximately 15
rules have been generated and no significant overfitting occurs when more fuzzy
rules are added to the knowledge base.

One might expect that the approximate fuzzy classifiers perform better on
data sets with dominantly continuous attributes and the descriptive version better
on those with a larger number of nominal attributes. However, the results in
Table 5.2 do not provide evidence to support this assumption. Even though single
approximate and descriptive rules differ in their expressive power, it seems that
the boosting scheme compensates for these limitations. The same applies to the
resolution of rules, as the descriptive GFS with five fuzzy sets does not perform
significantly worse than the GFS with seven fuzzy sets.

Figure 5.8 depicts the approximate fuzzy rules that were generated by the
genetic fuzzy classifier for the Bene2 data set. Figure 5.9 presents the descriptive
fuzzy rules extracted by the evolutionary fuzzy classifier using 5 fuzzy sets. One
can observe, that for data sets with a large number of attributes, such as the Bene2
credit data, the approximate GFS scheme generates more compact rule antecedents
that only refer to two or three attributes, whereas the descriptive rule antecedents
utilize more attributes. The DNF descriptive rules are better able to cope with
nominal attributes that do not obey an ordering relation, as they can form a
disjunction of multiple allowed nominal values. On the other hand, approximate
fuzzy rules offer an advantage for continuous attributes, in particular if the values
are not uniformly distributed across the universe of discourse as assumed by the
uniform descriptive fuzzy partitions. Also note how the weights complicate the
interpretation of the fuzzy rules individually. E.g., some of the rules depicted
in Figure 5.9 have very similar antecedents, but nevertheless propose opposite
classifications. Which of these classifications ultimately dominates, can only be
understood if one also takes the relative confidence levels of the rules into account.

128 Chapter 5. Fuzzy Rule Extraction for Credit Scoring

If Term is trap(5 5.4 51.3 57.5) And Number of Years in Belgium is trap(14.5 28.1 73 83.6)

And Age of Savings Account is trap(5.1 5.9 6 14.7) Then Customer=Good w= 1.70

If Number of Dependents is trap(0 0.7 6.2 7) And Parter Signed is trap(0.6 0.7 1.7 2.6)

Then Customer=Good w= 0.67

If Percentage of Financial Burden is trap(14 22.8 63.1 63.2)

And Purpose is trap(3.9 3.9 8.6 8.6) Then Customer=Bad w= 0.49

If Age of Savings Account is trap(4.4 4.7 5.7 6.3) Then Customer=Good w= 0.51

If Term is trap(24.2 36 63.9 65.3) And Property is trap(1.0 1.7 3.1 3.8)

Then Customer=Bad w= 0.32

Figure 5.8: Approximate fuzzy rules for the Bene2 data set. The weights w
correspond to the log(1/βt) factors (see equation 5.17).

5.5. Empirical Evaluation 129

If Monthly Amount is very low And Stock Ownership is very low or low or high And Loan Amount

is very low or medium or very high And Professional Income is very low or high And Number of

Years in Belgium is very low And Purpose of Loan is 1 or 2 or 3 or 4 or 5 or 6

Then Customer = Good w = 1.76

If Monthly Amount is very low or high or very high And Amount on Savings Account is very low

or low or medium or high And Non-professional Income is very low or low or medium And Number

of Years at Current Address is very low or medium And Number of Years in Belgium is very low

or low or very high And Total Income is very low or low or high or very high And Available

Income is very low or low or medium or high or very high And Partner Signed is 0 or 1 And

Marital Status is 1 or 2 or 3 or 4 or 5 And Works in Foreign Country is 0

Then Customer = Good w = 0.83

If Monthly Amount is very low or low And Amount on Savings Account is very low or low

or medium or high And Percentage of Mortgage Burden is very low or very high And Other loan

expenses is very low or medium or high And Non-professional Income is very low or medium And

Professional Income is very low or very high And Number of Years at current Job is very low or high

And Total Income is very low or very high And Available Income is very low or low or high or

very high And Purpose of Loan is 1 or 2 or 5 And Profession is 1 or 3 or 4 or 6 or 13 or 15 or 16

or 18 or 21 or 27 or 28 or 29 Then Customer= Good w = 0.41

If Monthly Amount is very low or high And Amount on Savings Account is very low

And Percentage of Mortgage Burden is very low or high or very high And Loan Amount is very low

or low or medium or high or very high And Number of Years in Belgium is very low or low or high

or very high And Total Income is very low or medium or high or very high And Available Income is

very low or low or high or very high And Marital Status is 1 or 2 or 6 Then Customer=Bad w = 0.47

If Percentage of Mortgage Burden is very low or low And Other loan expenses is very low or medium

And Loan Amount is very low And Professional Income is very low or high or very high And Number

of Years at Current Address is very low or high And Available Income is very low or high

And Partner Signed is 1 And Purpose of Loan is 1 or 2 or 3 or 4 or 6 And Loan Amount is very low

And Profession is 1 or 4 or 5 or 9 or 13 or 14 or 15 or 16 or 20 or 26 or 28 or 29

Then Customer = Good w = 0.32

Figure 5.9: Descriptive fuzzy rules for the Bene2 data set using 5 fuzzy sets. The
weights w correspond to the log(1/βt) factors (see equation 5.17).

130 Chapter 5. Fuzzy Rule Extraction for Credit Scoring

5.6 Conclusions

In this chapter, we proposed the use of fuzzy classification rules for credit scoring.
Fuzzy rules are believed to be more comprehensible than crisp rules because they
are expressed in terms of linguistic concepts which are more close to human rea-
soning. Many learning paradigms have been suggested to learn fuzzy classification
rules. We studied the use of evolutionary algorithms and a neurofuzzy classi-
fier. Two types of fuzzy rules were distinguished. Approximate fuzzy rules each
have their own specific definition of membership functions, whereas descriptive
fuzzy rules share a common, linguistically interpretable definition of membership
functions in disjunctive normal form. It is obvious that the latter are easier to
understand and comprehend than the former.

A genetic algorithm was used to infer the descriptive fuzzy rules whereas an
evolution strategy was adopted to extract the approximate fuzzy rules. Both evolu-
tionary algorithms used a boosting scheme that adapts the training set distribution
such that the classifier focusses on currently mis- or unclassified observations. The
performance of both evolutionary classifiers was compared with that of Nefclass,
a neurofuzzy classifier generating descriptive fuzzy rules, and with a selection of
well-known classification algorithms such as Fisher discriminant analysis, linear
discriminant analysis, neural networks, and C4.5 decision trees. The experiments
were carried out on a number of UCI data sets, amongst which the Australian
credit and German credit data set, and the Bene1 and Bene2 data sets. It was
shown that the evolutionary fuzzy rule learners compare favorably to the other
classification techniques in terms of classification accuracy. Furthermore, the ap-
proximate and descriptive fuzzy rules, extracted by the evolutionary fuzzy rule
learners, yield about the same classification accuracy across the different data
sets. The boosting scheme seems to compensate for the expressive weaknesses of
the individual classification rules. As a result no representation performs signifi-
cantly better in terms of classification accuracy than the other. If the individual
rules are more expressive, the same classification accuracy can be achieved with
a smaller rulebase. The designer of a genetic fuzzy classifier faces a trade-off be-
tween a smaller number of more complex rules and a larger rulebase composed
of more intuitive linguistic rules. Which design alternative is better, depends on
the requirements of the application and whether compactness or interpretability
of the rulebase are more important.

Although the descriptive fuzzy rules are more intuitively comprehensible than
their approximate counterparts, it has to be noted that the weighting and corre-
sponding voting scheme clouds the interpretation. Indeed, multiple rules typically
contribute to the classification of an instance, such that the overall view of why
it is classified into a specific class gets blurred. Hence, an important topic for
further research might be to adapt the evolutionary algorithm to infer exhaustive,
and mutually exclusive descriptive fuzzy rules which are not weighted and not
aggregated using voting schemes.

Chapter 6

Survival Analysis for Credit

Scoring

Traditionally, credit scoring aimed at distinguishing good payers from bad payers
at the time of the loan application. However, the issue of when customers become
bad is also very interesting to investigate since it can provide the bank with the
ability to compute the profitability over a customer’s lifetime and perform profit
scoring. The problem statement of analysing when customers default is commonly
referred to as survival analysis. Many survival analysis techniques have been sug-
gested in a medical context. It is the purpose of this chapter to discuss and contrast
statistical and neural network approaches for survival analysis in a credit scoring
context1. When compared to the traditional statistical proportional hazards model,
neural networks may offer an interesting alternative because of their universal ap-
proximation property and the fact that no baseline hazard assumption is needed.
Several neural network survival analysis models are discussed and evaluated ac-
cording to their way of dealing with censored observations, time-varying inputs,
the monotonicity of the generated survival curves and their scalability. In the ex-
perimental part of this chapter, we contrast the performance of a neural network
survival analysis model with that of the well-known proportional hazards model for
predicting both loan default and early repayment using data from a U.K. financial
institution.

1B. Baesens, T. Van Gestel, M. Stepanova, J. Vanthienen, Neural Network Survival Analysis
for Personal Loan Data, Proceedings of the Eighth Conference on Credit Scoring and Credit
Control (CSCCVII’2003), Edinburgh, Scotland, September, 2003.

131

132 Chapter 6. Survival Analysis for Credit Scoring

PSfrag replacements

A

B

C

D

E

TimeT

Figure 6.1: Censoring.

6.1 Basic Survival Analysis Concepts

Survival analysis deals with the problem of studying the occurrence and timing of
events [3, 49, 133, 161]. The primary goal is to predict at what time an observation
will undergo a particular event. Such an event is a qualitative change that can
be situated in time, a transition from one discrete state to another [3]. Survival
analysis then tries to predict the survival time of subjects by using descriptive
properties called inputs or covariates. In today’s literature, survival analysis is
primarily applied to the study of deaths in a medical context. In [40, 58, 160, 182,
189, 223], for example, the influence of specific characteristics of patients with
breast cancer on their survival time was studied. In [79, 268], survival analysis
was applied to investigate the recurrence of prostate cancer carcinoma while in
[174, 175] the same was done for AIDS. Other interesting application areas include
credit scoring [21, 221] where survival analysis is used to predict default times,
and marketing applications such as estimating interpurchase times [45, 115, 126]
or customer lifetime [65, 159].

Two common features that are typical for survival data complicate the use
of classical regression techniques: censoring and time-dependent variables [3, 49,
133, 161]. Ideally, each subject would be observed until the event occurs. How-
ever, some subjects may not have reached their event times when the study is
terminated. These are called (right) censored observations. In a medical con-
text, for example, patients may still be alive by the end of the study or may have
died from causes not relevant to the study. Suppose Figure 6.1 represents data
from a medical follow-up study investigating the survival of patients after heart
surgery. The vertical line at time T indicates the end of the study. It is clear
that patients A and D are not censored since they both die before T. However,
the death times of patients B and E are not observed during the study and are

6.1. Basic Survival Analysis Concepts 133

thus censored at time T. Note that patients may also become censored during the
time of the study. The death time of patient C is censored because e.g. he/she
refuses to further participate in the study or has moved to another country and
it is impossible to contact him/her. Note that thus far we have only considered
right-censored observations where the time of the event is always bigger than the
time of censoring. Left censoring occurs when the time of the event is smaller than
some value but is less likely to occur in a survival analysis setting.

The second characteristic of survival data is the appearance of time-dependent
inputs. The values of these inputs can vary over subsequent time periods, and are
equally difficult to model using conventional regression techniques.

The aim of survival analysis is to estimate the distribution of the event times
f(t) of a group of subjects. This is usually done by specifying two other mathe-
matically equivalent functions, the survival function S(t) and the hazard function
h(t) defined as follows [3, 49, 133]:

S(t) = P (T > t) =

∫ ∞

t

f(u)du = 1− F (t) (6.1)

h(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t
, (6.2)

whereby F (t) represents the cumulative distribution function. The survival func-
tion models the probability that a subject will survive time period t. It is a
monotone decreasing function of t with S(0) = 1 and S(∞) = 0. Note that the
integral is replaced by a summation for discrete distributions f(t). Since time is
continuous, the probability that an event will take place exactly at time t is 0.
Hence, the hazard looks at the probability of an event occurring in time interval
t to t + ∆t, given that the subject has survived to t. However, this probability
increases with ∆t, and this is compensated by dividing by ∆t. Taking the limit
for ∆t → 0, the hazard function tries to quantify the instantaneous risk that an
event will occur at time t given that the subject has survived to time t. It is a
non-negative function of t and can be greater than 1.0 because of the division by
∆t. It can also be thought of as the number of events per interval of time.

Since,

f(t) = lim
∆t→0

P (t ≤ T < t+∆t)

∆t
, (6.3)

and, by the definition of conditional probability, we have: h(t) = f(t)/S(t). Since
f(t) = −dS(t)/dt, we have h(t) = −dlog(S(t))/dt and:

S(t) = exp(−
∫ t

0

h(u)du). (6.4)

The integral between brackets is called the cumulative hazard (or cumulative risk)
and is denoted

H(t) =

∫ t

0

h(u)du. (6.5)

134 Chapter 6. Survival Analysis for Credit Scoring

It can be considered as the sum of the risks that are faced when going from time 0
to t. Using all these relationships, it becomes clear that once we know either f(t),
h(t) or S(t), the other two can be derived in a straightforward way.

6.2 Statistical Methods for Survival Analysis

6.2.1 Kaplan Meier Analysis

The Kaplan-Meier (KM) or product limit estimator is the non-parametric max-
imum likelihood estimator of the survival function S(t) [134]. In the absence of
censoring, the KM estimator Ŝ(t) is just the proportion of subjects having event
times greater than t. When censoring is present, we start by ordering the event
times in ascending order, t(1) < t(2) < ... < t(k)

2. The maximum likelihood KM
estimator for the survival function then becomes [134]:

Ŝ(t) =
∏

j|t(j)≤t

(
nj − dj
nj

) =
∏

j|t(j)≤t

(1− dj
nj

) = Ŝ(t− 1)(1− dt
nt

) (6.6)

where dj is the number of subjects with event time t(j) and nj is the total number of
subjects at risk at time t(j). A subject is at risk at time t(j) if its event or censoring

time is greater than or equal to t(j). Note that in (6.6), Ŝ(t − 1) represents the
survival function estimate at the event time immediately preceding t.

6.2.2 Parametric Survival Analysis Models

Parametric survival analysis models approximate the lifetime distribution f(t) by
using popular distribution functions e.g. the exponential, Weibull and Gompertz
distribution [3, 49, 133]. The distribution parameters are then estimated by max-
imizing the following likelihood function:

N
∏

i=1

[f(ti)]
δi [S(ti)

1−δi], (6.7)

where i runs over all event and censoring times and δi indicates if the observation
is censored at ti (δi = 0) or not (δi = 1). Indeed, if the subject fails at ti (δi = 1),
its contribution to the likelihood function is f(ti) whereas if the individual is
censored at ti (δi = 0) its contribution to the likelihood is the probability of
surviving beyond ti, S(ti).

2Note that these are the event times and not the censoring times and thus k < N .

6.2. Statistical Methods for Survival Analysis 135

Example 6.1

If, e.g., we assume that f(t) follows an exponential distribution, we have f(t) = λ exp(−λt),
S(t) = exp(−λt) and h(t) = λ. The likelihood function then becomes:

L =
N
∏

i=1

[λ exp(−λti)]
δi [exp(−λti)]

1−δi . (6.8)

Taking logarithms, we have

LL =
N
∑

i=1

[δi(log λ− λti) + (1− δi)(−λti)] = d log λ− λ
N
∑

i=1

ti, (6.9)

with d the number of subjects that fail: d =
∑N

i=1 δi. Differentiating with respect to λ,
we obtain:

∂LL

∂λ
=

d

λ
−

N
∑

i=1

ti. (6.10)

Equating this to zero yields

λ̂ =
d

∑N

i=1 ti
. (6.11)

Figure 6.5 represents the survival and hazard functions for an exponentially distributed
event time distribution f(t) with λ = 0.75.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

f(t)

S(t)

h(t)

t

Figure 6.2: Survival and hazard functions for an exponentially distributed event
time distribution f(t) with λ = 0.75.

The disadvantage of these parametric survival analysis models is that they are
not flexible enough to fit the data well because we have to assume a parametric
function for the distribution f(t). The smoothness of these popular distributions
can be very restrictive, especially if the hazard function shows spikes because of
specific events (e.g. contract expiration dates in a customer lifetime study [159]).

136 Chapter 6. Survival Analysis for Credit Scoring

6.2.3 Proportional Hazards Models

The most common model used for survival analysis is the Cox proportional hazards
model. The proportional hazards model (also called the Cox model) allows for the
inclusion of explanatory inputs which may influence the survival time. It assumes
that the inputs have a multiplicative effect on the hazard rate as follows [3, 49, 133]:

h(t,xi) = h0(t) exp[β
Txi]. (6.12)

This equation says that the hazard for a subject i at time t is the product of
an unspecified, positive baseline hazard function h0(t), and a linear function of a
vector of inputs xi which is exponentiated. The baseline hazard h0(t) is a function
of time only, and is assumed to be the same for all subjects. Since no intercept
is included in the summation, we have that h(t,xi) = h0(t) for a subject i whose
inputs xi(j) all have values of 0.

The name proportional hazard stems from the fact that the hazard of any
individual is a fixed proportion of the hazard of any other individual over time.
The hazard ratio of two subjects with input vectors x1 and x2 is

h(t,x1)

h(t,x2)
=
h0(t) exp(β

Tx1)

h0(t) exp(β
Tx2)

= exp[βT (x1 − x2)]. (6.13)

This expression is independent of t meaning that the ratio of the hazards remains
constant over time. By taking logarithms, we have

log(h(t,x1))− log(h(t,x2)) = βT (x1 − x2). (6.14)

Hence, if we plot log(h(t,x1)) and log(h(t,x2)) of two subjects, the curves will be
parallel over time which implies that the subjects most at risk at any one time
remain the subjects most at risk at all other times. From (6.13), it can also be
seen that the inputs have a multiplicative impact on the hazard rate, since e.g. for
all x2(j) = 0, we have

h(t,x1)

h(t,x2)
= exp(βTx1). (6.15)

.

The β parameters of the proportional hazards model can be estimated without
having to specify the baseline hazard function h0(t). Therefore, the proportional
hazards model is often called a semi-parametric model. The estimation of the β

coefficients is done by using the partial likelihood principle and ranking the event
times of all non-censored subjects t(1) < t(2) < ... < t(k)

3. Suppose xi denotes the
vector of inputs of a subject with event time t(i). Given the fact that one subject

3The term partial likelihood refers to the fact that one only considers the event times and not
the censoring times in the construction of the likelihood function.

6.2. Statistical Methods for Survival Analysis 137

has event time t(i), the probability that this subject has inputs xi is then given
by:

h(t(i),xi)∆t
∑

l∈R(t(i)) h(t(i),xl)∆t
=

exp(βTxi)h0(t(i))
∑

l∈R(t(i)) exp(β
Txl)h0(t(i))

=
exp(βTxi)

∑

l∈R(t(i)) exp(β
Txl)

,

(6.16)
whereby R(t(i)) represents the subjects that are at risk at t(i).

The likelihood function then becomes:

k
∏

i=1

exp(βTxi)
∑

l∈R(t(i)) exp(β
Txl)

, (6.17)

where i runs over all event times. The β parameters are then chosen to optimize the
logarithm of this partial likelihood function using the Newton-Raphson algorithm
[3, 49, 133, 161]. Observe how the censored observations do enter the partial
likelihood. These observations will be included in the risk sets R(t(i)) until their
censoring time. Equation (6.17) also indicates that the partial likelihood only
depends on the order of the event times and not on their exact values.

It is important to note that the partial likelihood formula of (6.17) assumes
that no two events occur at the same time. Many methods have been presented
to deal with this problem of tied event times. An exact method considers that the
ties arise from imprecise time measurements and assumes that there exists a true
time ordering for the tied data. The likelihood function is then extended in order
to take into account the various possible time orderings of the tied event times as
illustrated in Example 6.2.

Example 6.2

Suppose that 3 events occur at time ti for the subjects 1, 2 and 3 and ni subjects are at
risk that time. If the events take place in the order 1, 2, 3 then the partial likelihood for
these 3 events would be

exp(βTx1)
∑ni

j=1 exp(β
Txj)

exp(βTx2)
∑ni

j=2 exp(β
Txj)

exp(βTx3)
∑ni

j=3 exp(β
Txj)

. (6.18)

If the events would occur in the order 2, 1, 3 the partial likelihood becomes

exp(βTx2)
∑ni

j=1 exp(β
Txj)

exp(βTx1)
∑ni

j=1 exp(β
Txj)− exp(βTx2)

exp(βTx3)
∑ni

j=3 exp(β
Txj)

. (6.19)

All 3! possible orderings should then be considered and included in the partial likelihood
formula of (6.17).

However, when the data is heavily tied, this procedure quickly becomes computa-
tionally intractable. Hence, approximations have been suggested in the literature

138 Chapter 6. Survival Analysis for Credit Scoring

in order to deal with this problem. The most popular are the Breslow [34] and
Efron [70] approximations. The Breslow likelihood is

LB =

k
∏

i=1

exp(βT si)

(
∑

l∈R(t(i)) exp(β
Txl))di

, (6.20)

whereby si is the sum of the values xi of the subjects whose events occur at time
t(i) and di is the number of subjects with events at that time. The Efron likelihood
is

LE =

k
∏

i=1

exp(βT si)
∏di

j=1[
∑

l∈R(t(i)) exp(β
Txl)− j−1

di

∑

l∈Di
exp(βTxl)]

, (6.21)

whereby Di denotes the set of subjects with event times ti. It is often stated that
the Efron likelihood yields better parameter estimates than the Breslow likelihood
[3].

The baseline hazard h0(t) can be estimated by using a non-parametric maxi-
mum likelihood approach [49, 133]. This estimate may then be used in combination
with the estimated β parameters to compute hazard curves for individual subjects.
Using (6.12) and (6.4), we can then derive the survival function for subject i:

S(t,xi) = [S0(t)]
exp(βT

xi) with S0(t) = exp(−
∫ t

0

h0(u)du) = exp(−H0(t)).

(6.22)
Note that it is also possible to assume a parametric baseline hazard h0(t). E.g., if
we assume the baseline hazard to be exponential, the proportional hazards model
becomes:

h(t,xi) = λ exp[βTxi]. (6.23)

The β and λ parameters can then be estimated in one joint maximum likeli-
hood function [49, 133]. Furthermore, it can be shown that when the lifetime
distribution is assumed Weibull (or exponential, since this is just a special case
of Weibull), the proportional hazards model is at the same time an accelerated
failure time model where the effect of the inputs is to accelerate (or decelerate)
the time to failure [49, 133].

Two popular extensions of the proportional hazards model are time-varying
inputs and stratification [3, 49, 133]. In many situations, it is convenient to have
the inputs change over time. The only thing that changes in the model formulation
is that the inputs are now indexed by time: xi(t). When all inputs are time-
varying, the Cox model becomes

h(t,xi(t)) = h0(t) exp[β
Txi(t)]. (6.24)

It is important to note that in this case the proportional hazards assumption
no longer holds because the time-dependent inputs will change at different rates
for different subjects. Note that although the inputs are time-varying, the β

6.2. Statistical Methods for Survival Analysis 139

parameters remain constant over the time period considered. If the β parameters
were also allowed to vary over time, one obtains the most general version of the
proportional hazards model

h(t,xi(t)) = h0(t) exp[β
T (t)xi(t)]. (6.25)

Another way to introduce non-proportionality is stratification whereby differ-
ent baseline hazards h0s(t) are assumed for different subject populations (strata)
s = 1, ..., S that have different values for a stratification variable. This can be
useful when the data contains different clusters each having their own specific
baseline hazard function. Again, the β parameters may be estimated by using a
straightforward extension of the partial likelihood principle.

6.2.4 Discrete Proportional Hazards Models

When the time variable T is discrete, both the Breslow and Efron approximations
of (6.20) and (6.21) may yield poor estimates because of the substantial number
of ties per time point. In this subsection, we will discuss briefly two extensions of
the proportional hazards model for discrete survival time data.

Let T be a random variable with values t1 < t2 < ... and corresponding prob-
abilities:

f(ti) = fi = P (T = ti). (6.26)

The survivor function is defined as follows:

S(ti) = Si = P (T ≥ ti) =

∞
∑

k=i

fk, (6.27)

whereas the hazard function now becomes

h(ti) = hi = P (T = ti|T ≥ ti) =
fi
Si
. (6.28)

Note that the hazard is now a conditional probability rather than a rate. In order
to survive time period ti, a subject must first survive t1, then t2 given that he
survived t1 and so on, which gives

Si = (1− h1)(1− h2)...(1− hi−1), (6.29)

and thus also,
Si+1

Si
= 1− hi. (6.30)

A discrete analogue of the proportional hazards model of (6.12) can then be
obtained by starting from (6.22)

S(t,xi) = [S0(t)]
exp(βT

xi). (6.31)

140 Chapter 6. Survival Analysis for Credit Scoring

Since, according to (6.29)

S0(t) =
∏

tj<t

(1− h0(tj)), (6.32)

and recalling (6.30), we obtain the following relationship for the hazard

h(t,xi) = 1− [1− h0(t)]
exp(βT

xi), (6.33)

or

1− h(t,xi) = [1− h0(t)]
exp(βT

xi). (6.34)

The β parameters may then be estimated using a maximum likelihood proce-
dure [182]. Hereto, one applies a cloglog-transformation in order to improve the
Newton-Raphson convergence

log(− log(1− h(t,xi))) = αt + βTxi, (6.35)

with αt = log(− log(1− h0(t))). It is interesting to note that this model can also
be obtained by grouping time in the continuous-time proportional hazards model
of (6.12) [133].

Another discrete survival analysis model has been proposed by Cox and spec-
ifies a linear log odds relationship between the discrete hazard and the inputs[49]

h(t,xi)

1− h(t,xi)
=

h0(t)

1− h0(t)
exp(βTxi), (6.36)

or equivalently

log(
h(t,xi)

1− h(t,xi)
) = αt + βTxi, (6.37)

with αt = log(h0(t)
1−h0(t)

) and h(t,xi) and h0(t) the discrete (baseline) hazard. The

αt typically differ for each time interval. This model is often referred to as the
proportional odds model for grouped survival times. Note the similarity between
(6.37) and an ordinary logistic regression model. It is precisely this analogy that
allows to use the ordinary logistic regression estimation procedure on a slightly
transformed data set to estimate the parameters β and αt in a maximum likelihood
way [49]. This model is most appropriate when events can only occur at regular,
discrete points in time whereas the cloglog-model of (6.35) is more suited when
ties arise from grouping continuous-time data into intervals [3].

6.3 Neural Networks for Survival Analysis

A first drawback of the proportional hazards models discussed in the previous
section, is that the functional form of the inputs remains linear or some mild

6.3. Neural Networks for Survival Analysis 141

extension thereof. If more complex terms are to be included (e.g. interaction terms
between inputs, quadratic terms, ...), they must be specified somewhat arbitrarily
by the user [58]. Furthermore, this linear form invokes extreme hazard rates for
subjects with outlying values for their inputs [159]. And finally, in the standard
proportional hazards model, the baseline hazard function is assumed to be uniform
across the entire population resulting in proportional hazards. Although time-
varying inputs and stratification allow for non-proportionality, these extensions
might not provide the best way to model the baseline variation [58, 159]. In
this section, we will discuss how neural networks might offer an answer to these
problems by reviewing a number of studies using neural networks for survival
analysis.

6.3.1 Direct Classification

The simplest method considers survival for a fixed time period, and consequently
gives a binary classification problem [30, 40, 233]. Censored observations are re-
moved and biases are introduced. The neural network output then provides an
estimate of the probability that a subject will survive the time period. Above
the 50% threshold, the subject is assumed to survive the period. It is clear that
this approach is rather basic and does not allow to produce individual survival or
hazard curves. Furthermore, it does not deal with the problem of censoring and
time-varying inputs.

6.3.2 Ohno-Machado

Ohno-Machado [174, 175] uses multiple neural networks to solve the survival anal-
ysis problem. Each neural network has a single output predicting survival at a
certain time point. The networks are then trained using their own data subsets
consisting of cases that made it to the corresponding time period. Censored obser-
vations are included until their time of censoring. Hence, the number of training
instances gradually decreases for the later time intervals making the predictions
less reliable. The author argues that when using these neural networks in isola-
tion, non-monotonic survival curves may result. As a result, the probability of
a person surviving two periods could be greater than the probability to survive
one period because the interdependencies of the survival probabilities over time
are not properly taken into account when isolated neural networks are used. The
author describes a way to decrease the frequency of non-monotonic curves by com-
bining the neural networks. Survival predictions of one neural network are then
used as an additional input to another neural network as illustrated in Figure
6.3. However, it is still possible to obtain non-monotonic survival curves although
the departure from monotonicity is smaller than if the neural networks were not
connected to each other. Furthermore, the issue of how to combine the neural

142 Chapter 6. Survival Analysis for Credit Scoring

PSfrag replacements

S(ti) S(tj)

S(tk)

Figure 6.3: An example of a modular neural network for survival analysis whereby
the output of the networks predicting S(ti) and S(tj) are used as additional inputs
for the network predicting S(tk).

networks remains an open question. Although not presented in the original paper,
the approach allows to easily include time-dependent inputs into the different data
subsets. However, the necessity to use multiple neural networks and the question
how to combine them represent an important scalability problem which makes the
method less suitable for handling large data sets.

6.3.3 Ravdin and Clark

Ravdin and Clark [57, 58, 189] use a multi-layer feed-forward neural network with a
single output unit representing the survival status. A time indicator and a survival
status indicator are added to each record. The time indicator then records the
successive time periods [1, Tmax] for which a prediction is to be made, with Tmax

the maximum time of follow-up. An uncensored input is then replicated Tmax

times whereas a censored input is replicated t times with t being the time of
censoring. The survival status is the target of the network and is set to zero as
long as the subject is alive and to 1 otherwise. This is illustrated in Example 6.3.

Example 6.3

If a subject with attributes a and b has died at time 3 with Tmax=5 then the following
records are created (a,b,1,0), (a,b,2,0), (a,b,3,1), (a,b,4,1), (a,b,5,1). If a subject with
attributes c and d is censored at time 4 with Tmax = 5 the following records are created
(c,d,1,0),(c,d,2,0), (c,d,3,0),(c,d,4,0).

Although time dependent inputs were not discussed in the original study, they
can be easily included into the corresponding data records. The authors state

6.3. Neural Networks for Survival Analysis 143

that the output of the neural network (referred to as the prognostic index) is
roughly proportional to the Kaplan-Meier estimate of the survival probability.
However, they provide no guarantees that the generated survival curves will be
monotonically decreasing. Furthermore, the replication of records introduces two
problems. First, it will result in large biases because the number of deaths in the
late time intervals will be overrepresented. The authors suggest to handle this by
selective sampling such that the proportion of deaths matches the Kaplan-Meier
estimate. Second, while this method does not require the use of multiple networks,
it will result in very large data sets, which causes severe scalability problems.

6.3.4 Biganzoli et al.

A variation on the approach of Ravdin and Clark was suggested by Biganzoli et
al. [25]. They also train a neural network with one output and an additional
time indicator input. However, unlike Ravdin and Clark, uncensored subjects are
only replicated for the time intervals in which they were actually observed. Hence,
subjects that have died are not included after the time interval of death. Again,
time dependent inputs might be easily included since each subject has multiple
input vectors which may change across the intervals of observation. The neural
network predicts discrete hazard rates which may be easily converted to monotone
survival probabilities using (6.29). However, the approach is not scalable because
of the enormous data replication requirements.

6.3.5 Lapuerta et al.

Lapuerta et al. [144] suggest a multi-network strategy to impute the survival times
for the censored cases. For each time period considered, a separate neural network
is constructed. These networks are trained using only the observations for which
the survival status for the corresponding time period is known. Subsequently, the
trained networks are used to predict the outcome for the censored cases. The
non-censored and imputed censored observations are then provided for training
the principal neural network (referred to as the Predictor network in the original
paper) which predicts the probability of survival for each time period considered.
Although the proposed method compares favorably to the Cox proportional haz-
ards model, no guarantees are provided that the derived survival probabilities are
monotonically decreasing and time varying inputs are also not allowed. Further-
more, it is clear that this approach is not suitable for large-scale applications since
one needs to train as many neural networks as there are time periods considered.

144 Chapter 6. Survival Analysis for Credit Scoring

6.3.6 Faraggi

Faraggi [78, 79, 160] proposes a neural network extension of the Cox propor-
tional hazards model by replacing the linear function βTxi in (6.12) by the output
g(xi,θ) of a neural network with a single, logistic hidden layer and a linear output
layer

h(t,xi) = h0(t) exp[g(xi,θ)]. (6.38)

Analogous to the Cox model, no bias input is considered for the output layer since
this is implicitly incorporated into the baseline hazard h0(t). The θ parameters
are then also estimated using the partial likelihood principle and Newton-Raphson
optimization. The approach was applied in a breast cancer study in [160]. This
method allows to preserve all the advantages of the classical proportional haz-
ards model. However, the standard approach still assumes that the hazards are
proportional. Although time-varying covariates and/or stratification might allow
for non-proportionality, these extensions may not be the best way to model the
baseline variation.

6.3.7 Street

Street [223] uses a multilayer perceptron with Tmax output units to tackle the
survival analysis problem, whereby Tmax represents the maximum time horizon of
the study. A hyperbolic tangent activation function is used in the output layer
such that all output neurons take on values between −1 and +1. The first output
neuron having a value < 0 is considered to be the output neuron that predicts the
event time. If all output neurons have values > 1, then the patient is considered
to survive the entire time period of the study. The output units thus represent
the survival probability for the corresponding time period.

For the non-censored cases, the output values are set to +1 as long as the
patient is alive and to −1 thereafter. For the censored cases, the output units
are also set to +1 until their censoring time. After this period, Street uses the
Kaplan-Meier estimates of (6.6)

S(t) = S(t− 1)× (1− h(t)), (6.39)

with h(t) = dt
nt
, whereby dt represents the number of deaths in period t, and nt

represents the subjects at risk in that period. The latter number is calculated by
subtracting from the number of subjects at risk at the beginning of period t − 1,
the total number of deaths and the total number of censored observations in that
same period. The Kaplan-Meier hazards are then used to compute the survival
probability of the censored observations after the censoring time. Note that these
probabilities are then scaled to the range of the hyperbolic tangent function in the
following way: activation = 2× probability − 1.

6.3. Neural Networks for Survival Analysis 145

Example 6.4

Consider a study with 100 subjects. In the first time interval, 6 subjects die and 4 are
censored. In the second time interval, 10 subjects die. Hence, we have S1 = 1− 6/100 =
0.94 and S2 = S1(1 − 10/90) = 0.8355 since there are 90 patients at risk during the
second time interval.

In summary, the outputs of the training set observations are encoded as follows:

S(t) =







1 1 ≤ t ≤ L
−1 D = 1 and L < t ≤ Tmax

S(t− 1)× (1− h(t)) D = 0 and L < t ≤ Tmax,
(6.40)

whereby Tmax represents the maximum number of time periods involved in the
study, L the subject lifetime or censoring time, and D indicates if the subject is
censored (D = 0) or not (D = 1). The individual survival curve of an observation
can then be derived based on the activation values of the output units. Since
the neural network cannot be forced to generate monotonically decreasing output
units, a non-monotone survival curve is still possible, which complicates its inter-
pretation [159]. Furthermore, no extension is provided to deal with time-varying
inputs.

6.3.8 Mani

A variation on the method of Street was developed by Mani [159]. Again, for every
observation in the training set, Tmax output units are computed. Nevertheless,
these output units now represent the hazard rate instead of the survival probabil-
ities that were used in the approach of Street. The outputs are then computed as
follows:

h(t) =







0 1 ≤ t ≤ L
1 D = 1 and L < t ≤ Tmax
dt
nt

D = 0 and L < t ≤ Tmax

(6.41)

Again, Tmax represents the maximum number of periods involved in the study, L
the subject lifetime or censoring time, and D indicates if the subject is censored
(D = 0) or not (D = 1). For uncensored observations, the hazard is set to zero
until the time of death and 1 thereafter. For censored observations, the hazard is
set to zero until censoring time and to the Kaplan-Meier estimate thereafter. The
survival probabilities may then be estimated by using (6.6). The generated survival
curves will thus be monotonically decreasing which simplifies the interpretation
and increases robustness [159]. However, the topic of time-varying inputs has
been left unaddressed.

146 Chapter 6. Survival Analysis for Credit Scoring

6.3.9 Brown et al.

Analogous to Mani, Brown suggests a single neural network with multiple outputs
to predict hazard rates [39]. For the non-censored observations, the network output
is set to 0 as long as the subject is alive and to 1 when the subject undergoes the
event. For the time intervals following the event, the hazard is unconstrained.
The output values for the censored observations are set to 0 until the time of
censoring and are unconstrained for all subsequent time intervals. The authors
then suggest to train the neural network to minimize the sum of squared error
criterion and to perform no weight updates when the hazard is unconstrained
by setting the corresponding errors to 0. The approach presented is scalable and
results in monotonic survival curves. Again, no extension is presented to deal with
time-varying inputs.

6.3.10 Discussion

Table 6.1 presents an overview of the characteristics of the neural network based
methods for survival analysis discussed in the previous subsections. From the liter-
ature review above, it becomes clear that for large scale data sets, the approaches
of Faraggi, Mani and Brown seem the most interesting. All three allow to generate
monotonically decreasing survival curves and only one neural network needs to be
trained. Although the approach of Faraggi also allows for time-varying inputs,
it is less flexible in modeling the baseline variation. On the other hand, while
the approaches of Mani and Brown allow for flexible baseline modeling, they do
not solve the problem of time-varying inputs. Note that this literature review on
the use of neural networks for survival analysis is by no means exhaustive. Other
interesting references are, e.g., [19, 150, 194, 195].

6.4 Survival Analysis for Credit Scoring

Traditionally, the primary goal of credit scoring was to distinguish good customers
from bad customers without taking into account when customers tend to default.
The latter issue is however becoming more and more a key research question
since the whole process of credit granting and repayment is being more and more
conceived as dynamic instead of static. The advantages of having models that
estimate when customers default are [21, 235]

• the ability to compute the profitability over a customer’s lifetime and perform
profit scoring;

• these models may provide the bank with an estimate of the default levels
over time which is useful for debt provisioning;

6
.4
.
S
u
rv
iva

l
A
n
a
ly
sis

fo
r
C
red

it
S
co
rin

g
147

Multiple Single Monotone Censoring Time-varying Scalable

NN Output survival curve covariates

Direct classification [30, 40, 233] N Y N N N Y
Ohno-Machado [174, 175] Y Y N Y Y N
Ravdin and Clark [57, 58, 189] N Y N Y Y N
Biganzoli et al. [25] N Y Y Y Y N
Lapuerta et al. [144] Y N N Y N N
Faraggi [78, 79, 160] N Y Y Y Y Y
Street [223] N N N Y N Y
Mani [65, 159] N N Y Y N Y
Brown [39] N N Y Y N Y

Table 6.1: Characteristics of neural network survival analysis methods.

148 Chapter 6. Survival Analysis for Credit Scoring

• the estimates may help to decide upon the term of the loan;

• changes in economic conditions can be easier incorporated.

Until now, not many authors have addressed the issue of predicting customer
default times. In what follows, we will present a short literature overview on this
topic.

Narain was one the first authors to use survival analysis methods for credit
scoring [169]. He analysed a data set of 1242 applicants accepted for a 24 month
loan between mid 1986 and mid 1988. Each loan was described by 7 characteristics
of the applicant. A loan was considered bad if three consecutive payments have
been missed. The author then tries to predict the time until a loan defaults.
All good loans are considered to be right censored. Of the 1242 applicants, 533
were bad and 709 right censored. The data was analysed using the Kaplan-Meier
method and by fitting exponential regression models. It was shown that the results
obtained are encouraging and reasonable.

Banasik et al. report on the use of the proportional hazards model for pre-
dicting when borrowers default [21]. They use personal loan data from a major
U.K. financial institution which consists of application information of 50000 loans
accepted between June 1994 and March 1997 together with their monthly perfor-
mance description for the period up to July 1997. The data set was randomly
split into a training set (70% of the observations) and a test set (30% of the ob-
servations). Motivated by the competing risks approach, the authors suggest to
conduct the survival analyses for the bad and early repaid loans separately. For the
former, all bad loans are considered to be failed and the others censored, whereas
in the latter case all loans that are paid off early are treated as failed and all others
censored. It is then investigated how likely the loans are to become bad or paid off
early in their first 12 months and between 12 and 24 months. Hereto, the authors
use the non-parametric proportional hazards model (no baseline hazard assump-
tion), two parametric proportional hazards models using exponential and Weibull
baseline hazards, and an ordinary logistic regression approach. It is shown that,
for the first year, the proportional hazards models are competitive with the logistic
regression model for predicting default and may be superior for predicting early
pay-off. However, for the second year, the results for the proportional hazards
models are less encouraging when compared to the logistic regression models.

Stepanova and Thomas continue the research by Banasik et al. and try to
further augment the performance of the estimated proportional hazards models
[222]. They propose a new method to segment continuous or group discrete vari-
ables based on inspecting the survival analysis parameter estimates for the different
values of the variable. It is argued that this procedure should be done separately
for each failure type (early repayment or default). It is also suggested to segment
the data according to the term of the loans and estimate separate models for each
segment. The proportional hazards and logistic regression models are compared

6.5. Empirical Evaluation 149

with respect to the classification accuracy and the ROC curve. Furthermore, the
model fit of the proportional hazards models is also assessed by inspecting the
Cox-snell, Martingale, and Schoenfeld residuals. Finally, the authors also pro-
pose to include time-dependent inputs in order to overcome the proportionality
assumption.

In [221], Stepanova and Thomas build behavioral scoring models using propor-
tional hazards analysis. They used data provided by a U.K. financial institution
consisting of 11500 customers with 16 application characteristics and 4 perfor-
mance variables measured during 36 months. The data was split into three sam-
ples (two training samples and one hold-out sample) of approximately equal size.
The first sample was used to build an application score using stepwise propor-
tional hazards regression. PHAB (proportional hazards analysis behavior scores)
models where then built using the second training sample for each month of the
life of a loan. The predictors were the estimated application score and the perfor-
mance variables. Several combinations of predictors were tested out. Comparisons
are made with logistic regression by inspecting the ROC curves. It is also illus-
trated how the PHAB scores can be used to compute the expected profit during
each month of the loan (profit scoring). The authors conclude by saying that the
PHAB scores are useful as indicators of both risk and profit.

6.5 Empirical Evaluation

6.5.1 Experimental Setup and Data Set Characteristics

The statistical and neural network survival analysis techniques were applied to
personal loan data from a major U.K. financial institution [12]. All customers are
U.K. borrowers who had applied to the bank for a loan. The data set consisted
of the application information of 50000 personal loans, together with the repay-
ment status for each month of the observation period of 36 months. Application
characteristics available in the data set are summarized in Table 6.2. The status
variable indicated which loans were bad, paid off to term, paid off early, or still
open. We note that the same data was also used in [222]. However, we took a sub-
sample of 15000 observations and only considered loans having a duration of less
than 36 months. Missing values were imputed using the mean for the continuous
attributes and the most frequent category for the categoric attributes. The data
was randomly split into a training set (10000 observations) and a test set (5000
observations). Table 6.3 describes the various purposes of the loans.

Figure 6.4 depicts the Kaplan-Meier curves for both loan default and early
repayment. Note that in the default case, the Kaplan-Meier curve is very flat at
the beginning since our definition of a default is three months of payments missed
and thus no defaults occur during the first three months.

150 Chapter 6. Survival Analysis for Credit Scoring

Number Characteristic

1 Customer Age
2 Amount of Loan
3 Years at Current Address
4 Years with Current Employer
5 Customer Gender
6 Number of Dep. Children
7 Frequency paid
8 Home Phone Number Given
9 Insurance Premium
10 Loan type (single or joint)
11 Marital Status
12 Term of Loan
13 Home Ownership
14 Purpose of Loan

Table 6.2: Data set characteristics.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
0.7

0.75

0.8

0.85

0.9

0.95

1

PSfrag replacements

time

S
(
t
)

(a) KM curve for default

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

time

S
(
t
)

(b) KM curve for early repayment

Figure 6.4: Kaplan Meier curves for default and early repayment.

In the following subsections, we will investigate the use of statistical and neural
network survival analysis techniques for predicting both early repayment and loan
default. For the former, we considered all loans that are paid off early as failures
and all other loans as censored whereas in the latter case all defaulted loans are
failures and the remaining ones censored [21, 222]. For the statistical approaches,
we will experiment with the standard Cox model of 6.12 using both the Breslow
(6.20) and the Efron (6.21) approximations, as well as with its discrete analogue
variant of 6.36. The statistical survival analysis approaches will be implemented
using proc phreg in SASTM [3].

6.5. Empirical Evaluation 151

Number Purpose

1 Account standard
2 Caravan
3 New Car
4 Car Repair
5 Electrical
6 General Living
7 Home Improvement
8 Honeymoon
9 Motor Caravan
10 Mixed Purchases
11 Others
12 Redecoration
13 Remortgages
14 Weddings
15 Boat
16 Motor Cycle
17 Car Over 3Yr Old
18 Car Under 3Yr Old
19 Furniture
20 Graduate Loan
21 Holiday
22 Kitchen Units
23 Musical Instrument
24 Other Specific
25 Other Vehicles
26 Refinance
27 Van

Table 6.3: The purpose attribute.

For the neural network analyses, we will adopt a variant of the approach sug-
gested by Mani (see subsection 6.3.8). In order to generate monotonically decreas-
ing survival curves, we will train the neural network to predict hazard rates and
transform these to survival probabilities using equation 6.6. Figure 6.5 depicts
how the outputs of the neural network are encoded. For the good customers, the
output is set to zero until the last point of observation, to the Kaplan-Meier haz-
ard until the term of the loan, and to 0 until the last time period considered. For
the bad customers, we set the output to zero until the time of loan default and to
1 for all subsequent time periods. Concerning the architecture of the neural net-
work, we use one hidden layer influenced by theoretical works with show that NNs
with one hidden layer are universal approximators capable of approximating any
continuous function to any desired degree of accuracy on a compact interval[26].

152 Chapter 6. Survival Analysis for Credit Scoring

PSfrag replacements

t1

t1

t2

t2

to

to

to+1

to+1

td

td

td+1

td+1

tmax

tmax

0

0

0

0 0
dto+1

nto+1

dtd
ntd

0 0......

...

...

time of last observation

loan duration

loan duration

1 1 1 11

time of default

good customer:

bad customer:

Figure 6.5: Encoding of the neural network outputs for survival analysis.

The hidden neurons have hyperbolic tangent transfer functions and the output
neurons logistic transfer functions. The number of hidden neurons is determined
by experimental evaluation. Although some authors advocate the use of a sum of
squares error function (e.g. [39]), the cross-entropy error function is the most pop-
ular in the neural network survival analysis literature (e.g. [159, 175, 223]). Hence,
we train the networks to minimize a regularized cross-entropy error function as
follows [15, 26]

G = −
N
∑

i=1

yi log(zi) + (1− yi) log(1− zi) +
∑

k

αkEW (k), (6.42)

where yi is the target output, zi is the network output and EW (k) a regular-
ization term representing half of the squared weights of weight class k. Note
that we introduce n + 3 weight regularization terms EW (k), one for each input,
one associated with the input bias neuron, one with the hidden layer connec-
tions and one with the hidden layer bias neuron. It is well-known that intro-
ducing regularization terms into the neural network objective function is an ef-
ficient way to avoid overfitting. The αk parameters are then optimized on-line
using the automatic relevance determination (ARD) extension of the Bayesian
evidence framework of MacKay [15, 154, 155]. This framework assumes that all
weights of weight class k are distributed according to a Gaussian prior with mean
0 and σ2k = 1

αk
. The inferred αk values may then be used to order the inputs

with the most relevant inputs having the lowest αk values (for more details see
[154, 155]). All neural network analyses are conducted using the Netlab toolboxTM

[168] (http://www.ncrg.aston.ac.uk/netlab/).

Measuring the performance of a survival analysis model is not a trivial exercise.

6.5. Empirical Evaluation 153

Following Banasik et al. [21] and Stepanova and Thomas [222], we will compare
the performance of the survival analysis models by looking at the following criteria:

1. Estimating which loans will be paid off early or default within the first 12
months.

2. Estimating which loans, which are still repaying after 12 months, will pay
off early or default within the next 12 months.

Remember that the proportional hazards assumption assumes that the customers
most at risk at any one time remain the customers most at risk at all other times.
Note that this does not automatically imply that the same customers will be
labelled as failed (paid off early or defaulted) under each of the above criteria
since for the second criterion some of the customers that failed in the first 12
months will not be considered [21].

6.5.2 Results for Predicting Early Repayment

Before starting the analysis, we first grouped the categorical purpose attribute
into three categories by considering the probability of early repayment for each
loan purpose (see Table 6.4). The loan purposes having lowest probability of
early repayment were categorized as low risk, those having medium probability
of early repayment as medium risk, and the rest as high risk. Each category is
then encoded using binary dummy variables. We compare the performance of
the statistical and neural network survival analysis models with the performance
of a logistic regression classifier. Taking into account the performance criteria
discussed in the previous subsection, we estimate two logistic regression classifiers:
one where the bads are all the loans that defaulted in the first 12 months and one
where only loans that survived the first 12 months are considered and the bads are
the ones that defaulted before 24 months. Table 6.5 presents the confusion matrix
numbers of the logistic regression model, the Cox proportional hazards model and
the neural network. For the logistic regression classifier, we chose the cut-off to
map the output probabilities to class labels such that the predicted number of
early repayments equals the actual number of early repayments. For the Cox and
neural network survival analysis models, we labelled the observations having the
lowest S(12) as early repaid again taking care that the predicted number of early
repayments equals the actual number of early repayments. For the Cox model, we
experimented with the standard Cox model of 6.12 using both the Breslow (6.20)
and the Efron (6.21) approximations, as well as with its discrete analogue variant
of 6.36. All models were significant according to the likelihood ratio and Wald
test and the estimated parameters and p-values varied only very slightly. Hence,
we report the results for the discrete model. The neural network trained had one
hidden layer with 10 hidden neurons.

154 Chapter 6. Survival Analysis for Credit Scoring

Low Risk Medium Risk High Risk

Graduate Loan Home Improvement Car Repair
Holiday Other Specific Car Over 3Yr Old
Van Boat General Living
Electrical Others Remortgages
New Car Caravan Mixed Purchases
Redecoration Car Under 3Yr Old Musical Instrument
Honeymoon Weddings Motor Cycle
Kitchen Units Refinance Motor Caravan
Other Vehicles Furniture Account standard

Table 6.4: Grouping the purpose attribute for predicting early repayment.

Actual Logit Cox NN
G-predicted G 4020 3247 3263 3279
G-predicted B 0 773 757 741
B-predicted G 0 773 757 741
B-predicted B 980 207 223 239
Attr. most imp. term term insurance premium
Attr. 2nd most imp. amount low risk purp medium risk purp
Attr. 3rd most imp. low risk purp years at address high risk purp

Table 6.5: Predicting early repayment in first 12 months.

It can be observed from Table 6.5 that the logistic regression classifier achieved
a PCC of 69.08%, the Cox model a PCC of 69.72% and the neural network a PCC
of 70.36% on the test set. The logistic regression and Cox model consider the
term input as the most important whereas the neural network ranks the insurance
premium as most relevant.

Table 6.6 reports the results for predicting early repayment between 12 and
24 months. For the survival analysis models, we hereto calculated S(24)/S(12)
and labelled the observations with the lowest value for this ratio as early repaid
between 12-24 months again respecting the sample proportions. For the second

Actual Logit Cox NN
G-predicted G 2074 1661 1612 1639
G-predicted B 0 413 462 435
B-predicted G 0 413 462 435
B-predicted B 557 144 95 122

Table 6.6: Predicting early repayment 12-24 months.

performance measure, the logistic regression classifier achieved a PCC of 68.60%,
the Cox model a PCC of 64.88% and the NN a PCC of 66.93%. This indicates that

6.5. Empirical Evaluation 155

the performance benefit of the neural network when compared to the Cox model
is more pronounced for the second criterion than for the first criterion. Although,
for the second criterion, it is inferior when compared to the logistic regression
classifier, it has to be mentioned that the comparison is not completely fair since
two separate logistic regression classifiers were trained each specifically tailored to
the desired performance objective. Furthermore, also remember that the logistic
regression classifier only provides a classification decision whereas the Cox and
neural network models also provide information upon the timing of the event.

To investigate the effect of each continuous variable, surface plots were gener-
ated from the neural network by fixing the remaining continuous variables to their
median values and the categorical variables to their modal category. In general,
the survival probability for early repayment increases with decreasing customer
age (Figure 6.6 (a)), it showed an increasing trend with increasing amount (Fig-
ure 6.6 (b)), increasing years at address (Figure 6.6 (c)), increasing years with
employer (Figure 6.6 (d)), increasing insurance premium (Figure 6.6 (e)) and in-
creasing term (Figure 6.6 (f)). It has to be noted that these plots only provide a
preliminary insight into the relationship between the survival probabilities and the
inputs since non-additive interaction effects may exist between the inputs. How-
ever, they may allow the credit scoring expert to get an initial insight into the
impact of the application characteristics on the survival probabilities.

6.5.3 Results for Predicting Default

Since the most risky purposes for predicting early repayment, are not necessarily
the same as for predicting default, we again start by dividing the purpose attribute
into 3 categories (see Table 6.7). Table 6.8 presents the confusion matrix numbers

Low Risk Medium Risk High Risk

Account standard Electrical Mixed Purchases
Honeymoon Caravan Furniture
Motor Caravan Weddings Car Under 3Yr Old
Boat New Car General Living
Graduate Loan Home Improvement Other Vehicles
Kitchen Units Other Specific Car Repair
Van Others Refinance
Motor Cycle Musical Instrument Redecoration
Holiday Car over 3Yr Old Remortgages

Table 6.7: Grouping the purpose attribute for predicting default.

for predicting default in the first 12 months. Again, the Breslow, Efron and discrete
versions of the Cox model gave significant p-values for the Likelihood ratio and

156 Chapter 6. Survival Analysis for Credit Scoring

20
30

40
50

60
70

80

1
6

11
16

21
26

31
36

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

Age
t

S
(
t
)

(a) Age

2000
4000

6000
8000

10000
12000

1
6

11
16

21
26

31
36

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

Amountt

S
(
t
)

(b) Amount

0
10

20
30

40
50

60

5

10

15

20

25

30

35

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

Years at Address

t

S
(
t
)

(c) Years at Address

6.5. Empirical Evaluation 157

5
10

15
20

25
30

35
40

5

10

15

20

25

30

35

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

Years with Employert

S
(
t
)

(d) Years with Employer

200
400

600
800

1000
1200

5

10

15

20

25

30

35

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

Insurance Premiumt

S
(
t
)

(e) Insurance Premium

6

12

18

24

30

36

1
6

11
16

21
26

31
36

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

Term

t

S
(
t
)

(f) Term

Figure 6.6: Evolution of neural network survival distributions with respect to
inputs for predicting early repayment.

158 Chapter 6. Survival Analysis for Credit Scoring

Wald test and yielded similar coefficients and p-values. The neural network had
8 hidden neurons. The logistic regression classifier and the Cox model gave the

Actual Logit Cox NN
G-predicted G 4870 4750 4750 4752
G-predicted B 0 120 120 118
B-predicted G 0 120 120 118
B-predicted B 130 10 10 12
Attr. most imp. medium risk purp medium risk purp term
Attr. 2nd most imp. low risk purp low risk purp medium risk purp
Attr. 3rd most imp. years employed years employed years employed

Table 6.8: Predicting default in first 12 months.

same results (PCC=95.20%). The neural network only performed slightly better
(PCC=95.28%). Note that the logistic regression classifier and the Cox model
ranked the same 3 attributes as most important. Table 6.9 presents the results
for predicting default in 12-24 months. The Cox and NN model yielded the same

Actual Logit Cox NN
G-predicted G 2567 2506 2509 2509
G-predicted B 0 61 58 58
B-predicted G 0 61 58 58
B-predicted B 64 3 6 6

Table 6.9: Predicting default 12-24 months.

performance (PCC=95.59%) which was marginally better than the performance
of the logistic regression classifier (PCC=95.36%). When contrasting the results
depicted in Tables 6.8 and 6.9 with those of Tables 6.5 and 6.6, it becomes clear
that, for predicting default, the superiority of the neural network model is less
pronounced than for predicting early repayment. One of the reasons behind this
phenomenon might be that in the default case, the data is more skewed since only
130 customers of the 5000 actually defaulted in the first twelve months (2.6%)
and only 64 of the 2631 defaulted between 12 and 24 months (2.4%). For that
reason, we also conducted the experiments on a second default data set whereby we
oversampled the number of defaults. Table 6.10 presents the results for predicting
default in the first 12 months on the oversampled data set. The neural network had
16 hidden neurons. The logistic regression classifier yielded the best performance
(PCC=79.20%) followed by the Cox model (PCC=79.0%) and the neural network
(PCC=78.76%)). Observe how all three models agree on the importance of the
number of years employed in predicting loan default. Table 6.11 gives the results
for loan default between 12 and 24 months. Here, the neural network was superior
and yielded a PCC of 78.58% whereas the logistic regression classifier gave a PCC
of 78.24% and the Cox model a PCC of 77.50%.

Analogous to the previous subsection, we also generate 3D surface plots from

6.5. Empirical Evaluation 159

Actual Logit Cox NN
G-predicted G 4208 3688 3683 3677
G-predicted B 0 520 525 531
B-predicted G 0 520 525 531
B-predicted B 792 272 267 261
Attr. most imp. years employed years employed years employed
Attr. 2nd most imp. medium risk purp medium risk purp insurance premium
Attr. 3rd most imp. insurance premium insurance premium frequency paid

Table 6.10: Predicting default in first 12 months on oversampled data set.

Actual Logit Cox NN

G-predicted G 2015 1753 1744 1757
G-predicted B 0 262 271 258
B-predicted G 0 262 271 258
B-predicted B 394 132 123 136

Table 6.11: Predicting default 12-24 months on oversampled data set.

the neural network outputs in order to present a general view of the sensitivity of
the survival probabilities with respect to the continuous inputs (see Figure 6.7).

160 Chapter 6. Survival Analysis for Credit Scoring

20

30

40

50

60

70

5
10

15
20

25
30

35

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

Age

t

S
(
t
)

(a) Age

2000
4000

6000
8000

10000
12000

14000

1

6

11

16

21

26

31

36

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

Amount
t

S
(
t
)

(b) Amount

0
10

20
30

40
50

1
6

11
16

21
26

31
36

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

Years at Current Address

t

S
(
t
)

(c) Years at Current Address

6.5. Empirical Evaluation 161

0
10

20
30

40
50

1

6

11

16

21

26

31

36

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

Years With Employert

S
(
t
)

(d) Years with Employer

200

400

600

800

1000

1200

1400

1600

5
10

15
20

25
30

35

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

Insurance Premium

t

S
(
t
)

(e) Insurance Premium

6

12

18

24

30

36

5
10

15
20

25
30

35

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

Term

t

S
(
t
)

(f) Term

Figure 6.7: Evolution of neural network survival distributions with respect to
inputs for predicting default.

162 Chapter 6. Survival Analysis for Credit Scoring

6.6 Conclusions

In this chapter, we studied the use of survival analysis methods for credit scoring.
Traditionally, credit scoring aimed at distinguishing good customers from bad
customers. However, knowledge of the timing of when customers default or pay
off early has become more and more interesting for e.g. calculating the profit over a
customer’s lifetime. In the literature, this problem has been typically tackled using
statistical survival analysis methods such as the proportional hazards method.
However, these models suffer from a number of drawbacks: the functional form
of the inputs remains linear or some mild extension thereof, non-linearity and
interaction effects have to be explicitly and rather arbitrarily modeled by the
statistician, and in the standard proportional hazards model, the baseline hazard
function is assumed to be uniform and proportional across the entire population.

Multilayer perceptron neural networks have been proposed as a solution to the
above problems. Being non-linear, universal approximators, neural networks may
be a very attractive alternative for survival analysis modeling. Many approaches
have already been suggested in the literature to use neural networks for survival
analysis. Each of them differs in the way of modeling censored observations, time-
varying inputs and scalability. In this chapter, we provided a literature overview
of neural network approaches that have been (recently) suggested for survival
analysis modeling. Only a few approaches were found to be scalable and generated
monotonically decreasing survival curves.

In the empirical part of this chapter, we compared the performance of the
proportional hazards model with that of a neural network based survival analysis
model on a data set of 15000 observations. We investigated when customers default
as well as when they pay off their loan early. It was found that, for early repayment,
the suggested neural network approach outperformed the proportional hazards
model. For predicting default, the superiority of the neural network model was
somewhat less pronounced.

Chapter 7

Conclusions

In this PhD dissertation, we discussed how machine learning techniques may be
adopted to develop intelligent systems for credit scoring. In what follows, we
will provide a chapter-by-chapter overview of the thesis and indicate the major
contributions. Furthermore, we will also outline some issues for further research.

7.1 Thesis Summary and Principal Conclusions

The major goal of credit scoring is to distinguish between good and bad pay-
ers by using a model which was estimated based on the repayment behavior of
a set of applicants from the past. This problem statement essentially reduces to
a binary classification problem. Many techniques have been suggested to tackle
this. In chapter 2, we started with providing an overview of a selection of classi-
fication techniques. We discussed statistical classifiers (logistic regression, linear,
Fisher and quadratic discriminant analysis), linear programming, naive Bayes,
tree augmented naive Bayes, C4.5, C4.5rules, k-nearest neighbor, neural networks
and (least squares) support vector machine classifiers. This was followed with an
overview of some issues relating to the practical implementation of a classifier.
Topics that were addressed are: how to split up the data in order to assess the
performance of a classifier, and how to reduce the number of inputs used by a
classifier in order to make the classification model more simple and concise. We
then conducted a first benchmarking study in order to validate the performance of
some of the classification techniques discussed on 10 publicly available data sets.
Advanced parameter tuning methods were adopted and a rigorous statistical setup
was employed. A second benchmarking study revealed the performance of linear
and quadratic discriminant analysis, logistic regression, and least squares support
vector machines on the highly non-linear checkerboard and 2-spiral classification

163

164 Chapter 7. Conclusions

problems. From the first study, it was concluded that the non-linear RBF (least
squares) support vector machine classifiers consistently yielded a very good perfor-
mance on all data sets. However, the more simple, linear classifiers such as linear
discriminant analysis and logistic regression also give satisfactory performance on
most of the data sets considered. In the second study, the superiority of the non-
linear least squares support vector machine classifier was more pronounced than
in the first study. This allowed us to conclude that many real-life classification
data sets are very good separable using simple classification techniques although
non-linear classifiers may provide additional performance benefits which may be
very important in a data mining context. A criticism concerning both studies
was that they only considered the classification accuracy whereas misclassifica-
tion costs and class distributions are also related to classification performance. It
was then argued that the area under the receiver operating characteristic curve
is a performance measure independent of misclassification costs or class distribu-
tion. The chapter was concluded with a discussion of the McNemar and DeLong,
DeLong and Clarke-Pearson test to compare the classification accuracy and area
under the receiver operating characteristic curve, respectively.

In chapter 3, we studied the topic of building scorecards for credit scoring using
the classification techniques discussed in chapter 2. The chapter started with a
brief overview of the basic problem statement of credit scoring. Next, we discussed
the problem of reject inference and provided a literature overview on the use of
machine learning techniques for credit scoring. In the experimental part, we used
8 real-life credit scoring data sets. Two data sets originated from Benelux financial
institutions, four data sets from U.K. financial institutions and two were publicly
available data sets. We reported both the classification accuracy and the area
under the receiver operating characteristic curve. For the former, we experimented
with various cut-off setting schemes, e.g. a cut-off of 0.5, a cut-off assuming equal
sample proportions, and cut-offs assuming marginal good-bad rates around 5:1 and
3:1, respectively. Again a rigorous statistical setup was employed. It was concluded
that the least squares support vector machine classifier using a radial basis function
kernel and the neural network consistently performed very good on all data sets.
However, the more simple, linear techniques such as logistic regression and linear
discriminant analysis also yielded good classification performances which clearly
indicates that most credit scoring data sets are only weakly non-linear. It was also
remarked that it is our firm belief that the best way to augment the performance
of a scorecard is to look for better discriminatory predictors. The development of
credit reference agencies or credit bureaus may play a pivotal role in this context.

It was extensively argued in this dissertation that accuracy and comprehen-
sibility are two key properties of a successful credit scoring system. A credit
scoring expert will typically have low confidence and trust in using a mathemat-
ically complex, highly parameterized scorecard because of its low comprehensive
value. Hence, such black box decision models are likely not to be successfully inte-
grated and deployed into the daily credit decision environment. Starting from the

7.1. Thesis Summary and Principal Conclusions 165

observation that neural networks achieved very good classification performance
on all credit scoring data sets, we investigated in chapter 4 how their black box
property can be solved using crisp rule extraction techniques. The following rule
extraction techniques were studied: Neurolinear, Neurorule and Trepan. Neurolin-
ear and Neurorule are both decompositional rule extraction techniques extracting
oblique and propositional rules, respectively. Trepan is a pedagogical tree extrac-
tion algorithm generating trees with M-of-N type of splits. The experiments were
conducted on two real-life Benelux data sets and a publicly available credit scor-
ing data set. Both the continuous and the discretized versions were analyzed. We
reported the classification accuracy, the complexity (i.e. the number of rules, or
number of leave nodes and total number of nodes for the trees), and the fidelity
which is the percentage of observations which the extracted rule set or tree classi-
fies in the same way as the neural network. It was found that especially Neurorule
extracted concise, comprehensible rule sets with a high classification accuracy. In
a final step, we used decision tables to represent the extracted rules and trees
in an efficient and user-friendly manner. Hence, neural network rule extraction
and decision tables are two powerful management science tools that allow to build
accurate and comprehensible credit decision support systems.

The neural network rule extraction techniques studied in chapter 4 extract crisp
rules where the antecedents are either true or false. In chapter 5, we investigated
the use of fuzzy rule extraction techniques for building intelligent credit scoring
systems. Fuzzy rules use fuzzy sets in the antecedents to express vague, linguistic
concepts which are believed to be more close to human reasoning. A distinction
was made between approximate and descriptive fuzzy rules. Approximate fuzzy
rules use their own definition of membership functions whereas descriptive fuzzy
rules refer to a commonly defined set of membership functions. Descriptive fuzzy
rules are easier to understand and comprehend than their approximate counter-
parts. Many learning paradigms have been suggested to extract fuzzy rules from a
set of data. In chapter 5, we discussed the use of boosted evolutionary algorithms
to extract descriptive and approximate fuzzy rules and contrasted this with Nef-
class, a neurofuzzy classifier generating descriptive fuzzy rules. The experiments
were conducted on 4 credit scoring data sets, 2 publicly available data sets and 1
artificially generated data set. Comparisons were made with a selection of well-
known classification algorithms. It was concluded that the evolutionary fuzzy rule
learners compare favorably to the other algorithms in terms of classification accu-
racy. The descriptive and approximate fuzzy rules, extracted by the evolutionary
classifiers, yielded more or less the same accuracy across all data sets which in-
dicates that the boosting scheme compensated for the expressive weaknesses of
the individual classification rules. However, it was noted that the weighting and
voting scheme complicates the interpretation.

In all previous chapters, the purpose was to distinguish good payers from bad
payers using their application characteristics. However, knowing when customers
default is becoming more and more important since it can provide the financial

166 Chapter 7. Conclusions

institution with the ability to perform profit scoring. In chapter 6, we discussed
the use of survival analysis methods to analyze when customers default. We con-
trasted the use of the proportional hazards model, which is the most well-known
statistical survival analysis model, with the use of neural network survival analy-
sis models. The advantage of using the latter is that neural networks can model
non-linearities, complex interactions and do not rely on a proportional hazards
assumption. After an extensive literature overview, both the proportional hazards
model and a neural network model were compared on a real-life credit scoring
data set. We investigated both methods for predicting early repayment and de-
fault. It was concluded that, for early repayment, the suggested neural network
approach outperformed the proportional hazards model. For predicting default,
the superiority of the neural network was somewhat less pronounced.

7.2 Issues for Further Research

Starting from the conclusions and findings of this dissertation, many challenging
issues for further research can be identified.

7.2.1 The Knowledge Fusion problem

In this dissertation, our major goal was to develop scorecards by means of ma-
chine learning algorithms trained using a set of given observations representing
the repayment behavior of clients in the past. However, it needs to be noted that
although machine learning algorithms are very powerful, they generally rely on
modeling repeated patterns or correlations which occur in the data. It may well
occur that observations, which are very evident to classify by the domain expert,
do not appear frequently enough in the data in order to be appropriately modeled
by a machine learning algorithm. Hence, the intervention and interpretation of
the domain expert still remains crucial. Especially in a credit scoring context, fi-
nancial institutions typically already apply certain credit policies and rules based
on the experience and expertise of one or more credit scoring experts. This pre-
screening procedure forms the basis of the well-known reject inference problem
discussed in chapter 3. Essentially, one is confronted with two kinds of knowledge:
knowledge extracted from data and knowledge representing the experience of the
domain expert(s). Ideally, one should try to elicit the latter and merge it with
the former into one coherent credit scoring decision support system (see Figure
7.1). However, this knowledge fusion exercise is very challenging from an academic
viewpoint and forms an interesting avenue for future research.

7.2. Issues for Further Research 167

PSfrag replacements

domain expert domain expert domain expert

credit

database

knowledge knowledgeknowledge machine

acquisition acquisitionacquisition learning

knowledge fusion

consolidated credit

scoring knowledge

Figure 7.1: The Knowledge Fusion process.

7.2.2 Extensions to Indirect Credit Scoring

In this dissertation, we tackled the credit scoring problem as a classification prob-
lem. For most of the credit scoring data sets considered, a bad customer was
defined as someone who has missed three consecutive months of payments. In
indirect credit scoring, one first tries to predict the number of months in payment
arrears (or other criteria e.g., balance excess, turnover, ...) and then uses a deter-
ministic model to label customers as good or bad. The advantage of indirect credit
scoring is that it lends itself very well to using alternative definitions of good/bad,
i.e. one only needs to reformulate the deterministic model instead of having to
re-estimate the prediction model.

It would be interesting to investigate how our findings and results can be trans-
lated from a direct credit scoring context to an indirect credit scoring context. The
classification exercise then essentially becomes a regression exercise with a contin-
uous dependent variable. This would mean that we would have to include other
techniques in our benchmarking experiment. E.g., for the statistical part, one
should include Ordinary Least Squares (OLS) regression whereas for the decision
tree part, the CART (Classification And Regression Trees) method may be inter-
esting. One could also use neural network rule extraction in order to have more

168 Chapter 7. Conclusions

comprehensible models. Techniques that could be considered in this context are
REFANN (Rule Extraction from Function Approximating Neural Networks) [207]
for crisp rule extraction and ANFIS (Adaptive Network-Based Fuzzy Inference
System) for fuzzy rule extraction [127].

7.2.3 Behavioral Credit Scoring

It would be interesting to see how the ideas presented in this dissertation in an
application credit scoring setting, can be translated to a behavioral credit scor-
ing setting. Instead of only looking at the application characteristics, behavioral
models also try to capture some of the dynamics of the customer behavior by
monitoring their financial and/or socio-demographic status. The models are then
dynamically updated at regular time intervals and new scores can be computed
indicating the revised future risk profile of the customer. A challenging issue for
further research is how to adequately incorporate these dynamics into the credit
models by, e.g., building neural network survival analysis models having time-
varying inputs.

7.2.4 Extensions to other Contexts and Problem Domains

The ideas presented in this dissertation may be easily transferred and applied in
other relevant (classification) settings. An example is the closely related problem
of bankruptcy prediction where the aim is to distinguish between solvent and non-
solvent firms using a set of characteristics describing their financial status. Also, in
a marketing context, problems such as churn prediction and customer retention are
very well suited to be investigated. In a medical context, it would be interesting to
develop medical decision support systems using the ideas and concepts presented
in this dissertation.

Appendix A

Tables Accompanying

Benchmarking Study 1 of

Chapter 2

LS-SVM acr bld gcr hea ion pid snr ttt wbc adu

NCV 460 230 666 180 234 512 138 638 455 33000
n 14 6 20 13 33 8 60 9 9 14
RBF 0.86 0.75 0.83 0.86 1.00 0.78 0.94 1.00 0.98 0.85
Lin 0.87 0.69 0.75 0.85 0.90 0.78 0.88 0.66 0.96 0.82
Pol d = 2 0.89 0.75 0.82 0.87 0.99 0.79 0.98 0.98 0.98 0.85
Pol d = 3 0.88 0.76 0.91 0.88 0.99 0.78 0.98 1.00 0.98 0.85
Pol d = 4 0.86 0.76 0.93 0.89 0.93 0.78 0.96 1.00 0.98 0.85
Pol d = 5 0.89 0.76 0.94 0.85 0.90 0.78 0.99 1.00 0.97 0.85
Pol d = 6 0.88 0.75 0.91 0.86 0.94 0.79 0.99 1.00 0.98 0.85
Pol d = 7 0.89 0.76 0.94 0.85 0.95 0.80 0.96 1.00 0.98 0.85
Pol d = 8 0.89 0.76 0.91 0.85 0.98 0.81 0.99 1.00 0.98 0.85
Pol d = 9 0.88 0.76 0.93 0.86 0.93 0.78 0.98 1.00 0.98 0.85
Pol d = 10 0.88 0.78 0.95 0.85 0.99 0.78 0.98 1.00 0.98 0.85

Table A.1: Training set performance of LS-SVMs on 10 binary data sets.

169

170 Appendix A. Tables Accompanying Benchmarking Study 1 of Chapter 2

LS-SVM acr bld gcr hea ion pid snr ttt wbc adu

RBF: σ 22.75 41.25 31.25 5.69 3.30 240.00 33.00 2.93 6.97 10.0
RBF: log10(γ) 0.09 3.01 2.43 -0.76 0.63 3.04 0.86 2.20 -0.66 1.02
Lin: log10(γ) -2.29 0.14 -1.82 -1.51 -1.99 -0.21 -2.26 -2.68 -1.53 -0.82
Pol: d 5 3 6 2 2 3 2 4 3 3
Pol: c 5.61 15.30 5.86 1.80 7.18 42.42 3.87 3.00 5.25 5.61
Pol: log10(γ) -1.66 1.26 -1.20 -2.51 1.38 1.29 -1.27 0.45 -0.91 0.02

Table A.2: Optimized hyperparameter values of the LS-SVMs with RBF, linear
and polynomial kernels for the UCI classification data sets.

SVM acr bld gcr hea ion pid snr ttt wbc adu

RBF: σ 12.43 9.0 55.0 7.15 3.30 15.50 5.09 9.00 19.5 8.00
RBF: log10(C) 2.09 1.64 3.68 -0.51 0.51 0.04 1.70 -0.41 1.86 0.70
Lin: log10(C) -2.43 1.57 1.45 1.32 1.20 -2.08 -1.05 -4.25 -2.12 -2.30

Table A.3: Optimized hyperparameter values of the SVMs with RBF and linear
kernel for the UCI classification data sets.

Appendix B

Multiclass Benchmarking

Study

The benchmarking study reported in section 2.4 of chapter 2 was also extended to
a multiclass setting. All data sets have been obtained from the publicly accessible
UCI repository [27] at http://kdd.ics.uci.edu/, except for the US postal service
data set which was retrieved from http://www.kernel-machines.org/. Their
characteristics are displayed in Table B.1. Note that in Table B.1, NCV stands
for the number of data points used in the cross-validation based tuning procedure,
Ntest for the number of observations in the test set (see subsection 2.4.2) and N
for the total data set size. The number of numerical and categorical attributes is
denoted by nnum and ncat respectively, n is the total number of attributes.

For the multiclass SVM and LS-SVM classifiers, we experimented with different
types of output coding schemes. In minimum output coding (MOC), one uses

bal cmc ims iri led thy usp veh wav win

NCV 416 982 1540 100 2000 4800 6000 564 2400 118
Ntest 209 491 770 50 1000 2400 3298 282 1200 60
N 625 1473 2310 150 3000 7200 9298 846 3600 178
nnum 4 2 18 4 0 6 256 18 19 13
ncat 0 7 0 0 7 15 0 0 0 0
n 4 9 18 4 7 21 256 18 19 13
M 3 3 7 3 10 3 10 4 3 3
LMOC 2 2 3 2 4 2 4 2 2 2
L1vs1 3 3 21 3 45 3 45 6 2 3

Table B.1: Characteristics of the multiclass classification data sets.

171

172 Appendix B. Multiclass Benchmarking Study

d lnM
ln 2 e binary classifiers, where M is the number of classes and d·e rounds toward

+∞. In One-versus-One output coding (1vs1), M(M − 1)/2 binary classifiers are
constructed to discriminate between each pair of two classes. A new observation
is then assigned to the output code with minimal Hamming distance (see [240]
for more details). The M row in Table B.1 denotes the number of classes for
each data set, encoded by LMOC and L1vs1 bits for MOC and 1vs1 output coding,
respectively.

Table B.2 reports the performance of the multiclass classifiers on the 10 data
sets. It has the same setup as Table 2.4 from chapter 2. The same kernel types as
for the binary data sets were considered: RBF kernels, linear (Lin) and polynomial
(Pol) kernels with degrees d = 2, . . . , 10. Both the performance of LS-SVM and
LS-SVM with Fisher targets (LS-SVMF) classifiers are reported. The MOC and
1vs1 output coding were also applied to the SVM classifiers with linear and RBF
kernels.

The experimental setup outlined in sections 2.4.2 and 2.4.3 is used: each binary
classifier of the multiclass (LS-)SVM is designed on the first 2/3 of the data using
10-fold cross-validation, while the remaining 1/3 are put aside for testing. The se-
lected regularization and kernel parameters were then fixed and 10 randomizations
were conducted for each data set. The average test set accuracies of the different
LS-SVM and LS-SVMF classifiers, with RBF, Lin and Pol kernel (d = 2, . . . , 10)
and using MOC and 1vs1 output coding, are reported in Table B.2. The test
set accuracies of the reference algorithms on the same randomizations are also
reported, where we remark that for the usp data set the memory requirements
for logit were too high. Instead, we tabulated the performance of logit for this
single case. The same statistical tests as in section 2.4.3 were used to compare the
performance of the different classifiers.

The use of QDA yields the best average test set accuracy on two data sets,
while LS-SVMs with 1vs1 coding using a RBF and Lin kernel and LS-SVMF with
Lin kernel each yield the best performance on one data set. SVMs with RBF
kernel with MOC and 1vs1 coding yield the best performance on one data set
each. Also C4.5, logit and IB1 each achieve one time the best performance. The
use of 1vs1 coding generally results into a better classification accuracy. Averaging
over all 10 multiclass data sets, the LS-SVM classifier with RBF kernel and 1vs1
output coding achieves the best average accuracy (AA) and average ranking, while
its performance is only on three domains significantly worse at the 1% level than
the best algorithm. This performance is not significantly different from the SVM
with RBF kernel and 1vs1 output coding. Summarizing the different significance
tests, RBF LS-SVM (MOC), Pol LS-SVM (MOC), Lin LS-SVM (1vs1), Lin LS-
SVMF (1vs1), Pol LS-SVM (1vs1), RBF SVM (MOC), RBF SVM (1vs1), Lin
SVM (1vs1), LDA, QDA, C4.5, IB1 and IB10 perform not significantly different
at the 5% level. While NBk performed well on the binary data sets, its average
accuracy in the multiclass case is never comparable at the 5% level for all three
tests. The results of Table B.2 illustrate that the SVM and LS-SVM classifier

173

with RBF kernel using 1vs1 output coding consistently yield very good test set
accuracies on the multiclass data sets.

17
4

A
p
p
en
d
ix

B
.
M
u
lt
ic
la
ss

B
en
ch
m
a
rk
in
g
S
tu
d
y bal cmc ims iri led thy usp veh wav win AA AR PST

Ntest 209 491 770 50 1000 2400 3298 282 1200 60

n 4 9 18 4 7 21 256 18 19 13

RBF LS-SVM (MOC) 92.7(1.0) 54.1(1.8) 95.5(0.6) 96.6(2.8) 70.8(1.4) 96.6(0.4) 95.3(0.5) 81.9(2.6) 99.8(0.2) 98.7(1.3) 88.2 7.1 0.344

RBF LS-SVMF (MOC) 86.8(2.4) 43.5(2.6) 69.6(3.2) 98.4(2.1) 36.1(2.4) 22.0(4.7) 86.5(1.0) 66.5(6.1) 99.5(0.2) 93.2(3.4) 70.2 17.8 0.109

Lin LS-SVM (MOC) 90.4(0.8) 46.9(3.0) 72.1(1.2) 89.6(5.6) 52.1(2.2) 93.2(0.6) 76.5(0.6) 69.4(2.3) 90.4(1.1) 97.3(2.0) 77.8 17.8 0.002

Lin LS-SVMF (MOC) 86.6(1.7) 42.7(2.0) 69.8(1.2) 77.0(3.8) 35.1(2.6) 54.1(1.3) 58.2(0.9) 69.1(2.0) 55.7(1.3) 85.5(5.1) 63.4 22.4 0.002

Pol LS-SVM (MOC) 94.0(0.8) 53.5(2.3) 87.2(2.6) 96.4(3.7) 70.9(1.5) 94.7(0.2) 95.0(0.8) 81.8(1.2) 99.6(0.3) 97.8(1.9) 87.1 9.8 0.109

Pol LS-SVMF (MOC) 93.2(1.9) 47.4(1.6) 86.2(3.2) 96.0(3.7) 67.7(0.8) 69.9(2.8) 87.2(0.9) 81.9(1.3) 96.1(0.7) 92.2(3.2) 81.8 15.7 0.002

RBF LS-SVM (1vs1) 94.2(2.2) 55.7(2.2) 96.5(0.5) 97.6(2.3) 74.1(1.3) 96.8(0.3) 94.8(2.5) 83.6(1.3) 99.3(0.4) 98.2(1.8) 89.1 5.9 1.000

RBF LS-SVMF (1vs1) 71.4(15.5) 42.7(3.7) 46.2(6.5) 79.8(10.3) 58.9(8.5) 92.6(0.2) 30.7(2.4) 24.9(2.5) 97.3(1.7) 67.3(14.6) 61.2 22.3 0.002

Lin LS-SVM (1vs1) 87.8(2.2) 50.8(2.4) 93.4(1.0) 98.4(1.8) 74.5(1.0) 93.2(0.3) 95.4(0.3) 79.8(2.1) 97.6(0.9) 98.3(2.5) 86.9 9.7 0.754

Lin LS-SVMF (1vs1) 87.7(1.8) 49.6(1.8) 93.4(0.9) 98.6(1.3) 74.5(1.0) 74.9(0.8) 95.3(0.3) 79.8(2.2) 98.2(0.6) 97.7(1.8) 85.0 11.1 0.344

Pol LS-SVM (1vs1) 95.4(1.0) 53.2(2.2) 95.2(0.6) 96.8(2.3) 72.8(2.6) 88.8(14.6) 96.0(2.1) 82.8(1.8) 99.0(0.4) 99.0(1.4) 87.9 8.9 0.344

Pol LS-SVMF (1vs1) 56.5(16.7) 41.8(1.8) 30.1(3.8) 71.4(12.4) 32.6(10.9) 92.6(0.7) 95.8(1.7) 20.3(6.7) 77.5(4.9) 82.3(12.2) 60.1 21.9 0.021

RBF SVM (MOC) 99.2(0.5) 51.0(1.4) 94.9(0.9) 96.6(3.4) 69.9(1.0) 96.6(0.2) 95.5(0.4) 77.6(1.7) 99.7(0.1) 97.8(2.1) 87.9 8.6 0.344

Lin SVM (MOC) 98.3(1.2) 45.8(1.6) 74.1(1.4) 95.0(10.5) 50.9(3.2) 92.5(0.3) 81.9(0.3) 70.3(2.5) 99.2(0.2) 97.3(2.6) 80.5 16.1 0.021

RBF SVM (1vs1) 98.3(1.2) 54.7(2.4) 96.0(0.4) 97.0(3.0) 64.6(5.6) 98.3(0.3) 97.2(0.2) 83.8(1.6) 99.6(0.2) 96.8(5.7) 88.6 6.5 1.000

Lin SVM (1vs1) 91.0(2.3) 50.8(1.6) 95.2(0.7) 98.0(1.9) 74.4(1.2) 97.1(0.3) 95.1(0.3) 78.1(2.4) 99.6(0.2) 98.3(3.1) 87.8 7.3 0.754

LDA 86.9(2.1) 51.8(2.2) 91.2(1.1) 98.6(1.0) 73.7(0.8) 93.7(0.3) 91.5(0.5) 77.4(2.7) 94.6(1.2) 98.7(1.5) 85.8 11.0 0.109

QDA 90.5(1.1) 50.6(2.1) 81.8(9.6) 98.2(1.8) 73.6(1.1) 93.4(0.3) 74.7(0.7) 84.8(1.5) 60.9(9.5) 99.2(1.2) 80.8 11.8 0.344

Logit 88.5(2.0) 51.6(2.4) 95.4(0.6) 97.0(3.9) 73.9(1.0) 95.8(0.5) 91.5(0.5) 78.3(2.3) 99.9(0.1) 95.0(3.2) 86.7 9.8 0.021

C4.5 66.0(3.6) 50.9(1.7) 96.1(0.7) 96.0(3.1) 73.6(1.3) 99.7(0.1) 88.7(0.3) 71.1(2.6) 99.8(0.1) 87.0(5.0) 82.9 11.8 0.109

oneR 59.5(3.1) 43.2(3.5) 62.9(2.4) 95.2(2.5) 17.8(0.8) 96.3(0.5) 32.9(1.1) 52.9(1.9) 67.4(1.1) 76.2(4.6) 60.4 21.6 0.002

IB1 81.5(2.7) 43.3(1.1) 96.8(0.6) 95.6(3.6) 74.0(1.3) 92.2(0.4) 97.0(0.2) 70.1(2.9) 99.7(0.1) 95.2(2.0) 84.5 12.9 0.344

IB10 83.6(2.3) 44.3(2.4) 94.3(0.7) 97.2(1.9) 74.2(1.3) 93.7(0.3) 96.1(0.3) 67.1(2.1) 99.4(0.1) 96.2(1.9) 84.6 12.4 0.344

NBk 89.9(2.0) 51.2(2.3) 84.9(1.4) 97.0(2.5) 74.0(1.2) 96.4(0.2) 79.3(0.9) 60.0(2.3) 99.5(0.1) 97.7(1.6) 83.0 12.2 0.021

NBn 89.9(2.0) 48.9(1.8) 80.1(1.0) 97.2(2.7) 74.0(1.2) 95.5(0.4) 78.2(0.6) 44.9(2.8) 99.5(0.1) 97.5(1.8) 80.6 13.6 0.021

Maj. Rule 48.7(2.3) 43.2(1.8) 15.5(0.6) 38.6(2.8) 11.4(0.0) 92.5(0.3) 16.8(0.4) 27.7(1.5) 34.2(0.8) 39.7(2.8) 36.8 24.8 0.002

Table B.2: The multiclass benchmarking study.

175

176 Appendix C. Attributes for German credit

Appendix C

Attributes for German credit

Nr Name Type Explanation

1 Checking account nominal 1: < 0 DM; 2: ≥ 0 and < 200 DM;
3: ≥ 200 DM/salary assignments
for at least one year;
4: no checking account

2 Term continuous
3 Credit history nominal 0: no credits taken/all credits

paid back duly; 1: all credits at
this bank paid back duly; 2:
existing credits paid back duly
till now; 3: delay in paying off
in the past; 4: critical account/
other credits (not at this bank)

4 Purpose nominal 0: car (new); 1: car (old);
2: furniture/equipment; 3: radio/
television; 4: domestic
appliances; 5: repairs;
6: education; 7: vacation;
8: retraining; 9: business;
10: others

5 Credit amount continuous
6 Savings account nominal 1: < 100 DM; 2: ≥ 100 DM and

< 500 DM; 3: ≥ 500 and
< 1000 DM; 4: ≥ 1000 DM;
5: unknown/no savings account

7 Present employment nominal 1: unemployed; 2: < 1 year;
since 3: ≥ 1 year and < 4 years;

4: ≥ 4 and < 7 years;
5: ≥ 7 years

177

8 Installment rate continuous
(% of disposable income)

9 Personal status and sex nominal 1: male,divorced/separated;
2: female, divorced/separated/
married; 3: male, single;
4: male, married/widowed;
5: female,single

10 Other parties nominal 1: none;
2: co-applicant;
3: guarantor

11 Present residence since continuous
12 Property nominal 1: real estate; 2: if

not 1: building society savings
agreement/life insurance;
3: if not 1/2: car or other;
4: unknown/no property

13 Age continuous
14 Other installment plans nominal 1: bank; 2: stores

3: none
15 Housing nominal 1: rent; 2: own

3: for free
16 Number of existing credits continuous

at this bank
17 Job nominal 1: unemployed/unskilled-non-

resident; 2: unskilled-resident; 3: skilled
employee/official; 4: management/
self employed/ highly qualified
employee/officer

18 Number of dependents continuous
19 Telephone nominal 1: none; 2: yes,

registered under the customer
name

20 Foreign worker nominal 1: yes; 2: no

Table C.1: Attributes for the German credit data set.

178 Appendix C. Attributes for German credit

179

180 Appendix D. Attributes for Bene1

Appendix D

Attributes for Bene1

Nr Name Type

1 Identification number continuous
2 Amount of loan continuous
3 Amount on purchase invoice continuous
4 Percentage of financial burden continuous
5 Term continuous
6 Personal loan nominal
7 Purpose nominal
8 Private or professional loan nominal
9 Monthly payment continuous
10 Savings account continuous
11 Other loan expenses continuous
12 Income continuous
13 Profession nominal
14 Number of years employed continuous
15 Number of years in Belgium continuous
16 Age continuous
17 Applicant Type nominal
18 Nationality nominal
19 Marital status nominal
20 Number of years since last house move continuous
21 Code of regular saver nominal
22 Property nominal
23 Existing credit info nominal
24 Number of years client continuous
25 Number of years since last loan continuous
26 Number of checking accounts continuous

181

27 Number of term accounts continuous
28 Number of mortgages continuous
29 Number of dependents continuous
30 Pawn nominal
31 Economical sector nominal
32 Employment status nominal
33 Title/salutation nominal

Table D.1: Attributes for the Bene1 data set.

182 Appendix D. Attributes for Bene1

List of Figures

I Het reject inference probleem. xiii

II Neuraal netwerk voor het voorspellen van kredietwaardigheid. . . . xvi

III Als-dan’-regels geëxtraheerd uit het neuraal netwerk van Figuur II. xvii

IV Het gebruik van vage regels voor krediettoekening. xvii

V Beslissingstabel voor de regels van Figuur III. xviii

VI Het knowledge fusion proces. xix

1.1 The Knowledge Discovery in Data process. 2

2.1 Quadratic versus Linear Discriminant analysis. 13

2.2 An example Bayesian network classifier [73]. 16

2.3 Example of a Bayesian network classifier for marketing [14]. 16

2.4 Example of a Bayesian network classifier for credit scoring [8]. . . . 17

2.5 The naive Bayes classifier. 18

2.6 The tree augmented naive Bayes classifier. 19

2.7 Example Decision Tree [163]. 20

2.8 The Entropy measure. 20

2.9 The 5-nearest neighbor classifier [67]. 23

2.10 Architecture of a Multilayer Perceptron with one hidden layer. . . 24

2.11 Neural network transfer functions. 25

183

184 List of Figures

2.12 Illustration of SVM optimization of the margin in the feature space. 27

2.13 10-fold cross-validation. 31

2.14 Input search space. 32

2.15 Cross-validation (CV10) classification accuracy on the ion data set. 36

2.16 The checkerboard and 2-spiral classification problem. 42

2.17 LS-SVM generalisation behaviour on the checkerboard and 2-spiral
classification problem. 43

2.18 The receiver operating characteristic curve (ROC). 47

3.1 Direct versus indirect credit scoring. 55

3.2 The reject inference problem. 56

4.1 Oblique rules versus propositional rules. 78

4.2 Example network used by Neurorule and Neurolinear for rule ex-
traction. 83

4.3 Oblique rules extracted by Neurolinear for German credit. 91

4.4 Oblique rules extracted by Neurolinear for Bene1. 92

4.5 Neural network trained and pruned for Bene1. 93

4.6 Rules Extracted by Neurorule for German credit. 96

4.7 Rules Extracted by Neurorule for Bene1. 96

4.8 Tree extracted by Trepan for German credit. 97

4.9 Tree extracted by Trepan for Bene1. 97

4.10 DT quadrants. 98

4.11 Minimizing the number of columns of a DT. 99

4.12 Example of an unordered DT. 99

4.13 DT size distribution [9]. 101

4.14 Decision table for the rules extracted by Neurorule on German credit.103

4.15 Decision table for the rules extracted by Neurorule on Bene1. . . . 103

List of Figures 185

4.16 Example consultation session in Prologa. 104

4.17 Classifying an applicant in Prologa. 105

5.1 Fuzzy sets and corresponding membership functions for age. 111

5.2 Approximate fuzzy rules versus Descriptive fuzzy rules. 112

5.3 Outline of an evolutionary algorithm [36, 38]. 113

5.4 Architecture of a boosted evolutionary classifier. 115

5.5 Coding of trapezoidal fuzzy sets. 116

5.6 Example Nefclass network. 121

5.7 Evolution of the training and test set classification accuracy with the
number of fuzzy rules generated for the evolutionary fuzzy classifiers
on the Bene2 data set. 126

5.8 Approximate fuzzy rules for the Bene2 data set. The weights w
correspond to the log(1/βt) factors (see equation 5.17). 128

5.9 Descriptive fuzzy rules for the Bene2 data set using 5 fuzzy sets.
The weights w correspond to the log(1/βt) factors (see equation
5.17). 129

6.1 Censoring. 132

6.2 Survival and hazard functions for an exponentially distributed event
time distribution f(t) with λ = 0.75. 135

6.3 An example of a modular neural network for survival analysis whereby
the output of the networks predicting S(ti) and S(tj) are used as
additional inputs for the network predicting S(tk). 142

6.4 Kaplan Meier curves for default and early repayment. 150

6.5 Encoding of the neural network outputs for survival analysis. . . . 152

6.6 Evolution of neural network survival distributions with respect to
inputs for predicting early repayment. 157

6.7 Evolution of neural network survival distributions with respect to
inputs for predicting default. 161

7.1 The Knowledge Fusion process. 167

186 List of Figures

List of Tables

I Voorspellende versus beschrijvende data mining. xiv

1.1 Types of data mining. 3

1.2 Example machine learning algorithms. 3

2.1 Characteristics of the binary classification UCI data sets. 34

2.2 Validation set performance of LS-SVMs on 10 binary data sets. . . 38

2.3 Test set performance of LS-SVMs on 10 binary data sets. 39

2.4 Comparison of the 10 times randomized test set performance of all
classifiers. 41

2.5 LDA, QDA, logit and LS-SVM classification accuracy on the checker-
board and 2-spiral classification problem. 42

2.6 Economics resulting from performance differences among response
models. 44

2.7 The confusion matrix for binary classification. 45

2.8 Contingency table for McNemar test. 48

3.1 Characteristics of credit scoring data sets. 61

3.2 The marginal good-bad rate. 64

3.3 Test set classification accuracy on credit scoring data sets assuming
a cut-off of 0.5. 67

3.4 Test set classification accuracy on credit scoring data sets assuming
equal sample proportions. 68

187

188 List of Tables

3.5 Test set classification accuracy on credit scoring data sets assuming
a marginal good-bad rate around 5:1. 69

3.6 Test set classification accuracy on credit scoring data sets assuming
a marginal good-bad rate around 3:1. 70

3.7 Test set AUC on credit scoring data sets. 71

4.1 The XOR classification problem. 78

4.2 Characteristics of neural network rule extraction techniques. 80

4.3 The thermometer encoding procedure for ordinal variables. 81

4.4 The dummy encoding procedure for nominal variables. 82

4.5 The fidelity measure. 89

4.6 Neural network rule extraction results for the continuous data sets. 91

4.7 Fidelity rates of extraction techniques. 91

4.8 Neural network rule extraction results for the discretized data sets. 94

4.9 Fidelity rates of extraction techniques. 94

4.10 The number of columns in the expanded and reduced DTs for the
three data sets for the rules and trees extracted by Neurorule and
Trepan. 104

5.1 Characteristics of data sets. 123

5.2 Classification accuracy of the evolutionary and neurofuzzy classifiers
versus a selection of well-known classification algorithms. 125

6.1 Characteristics of neural network survival analysis methods. 147

6.2 Data set characteristics. 150

6.3 The purpose attribute. 151

6.4 Grouping the purpose attribute for predicting early repayment. . . 154

6.5 Predicting early repayment in first 12 months. 154

6.6 Predicting early repayment 12-24 months. 154

6.7 Grouping the purpose attribute for predicting default. 155

List of Tables 189

6.8 Predicting default in first 12 months. 158

6.9 Predicting default 12-24 months. 158

6.10 Predicting default in first 12 months on oversampled data set. . . . 159

6.11 Predicting default 12-24 months on oversampled data set. 159

A.1 Training set performance of LS-SVMs on 10 binary data sets. . . . 169

A.2 Optimized hyperparameter values of the LS-SVM. 170

A.3 Optimized hyperparameter values of the SVMs. 170

B.1 Characteristics of the multiclass classification data sets. 171

B.2 The multiclass benchmarking study. 174

C.1 Attributes for the German credit data set. 177

D.1 Attributes for the Bene1 data set. 181

190 List of Tables

Bibliography

[1] D. Aha and D. Kibler. Instance-based learning algorithms. Machine Learn-
ing, 6:37–66, 1991.

[2] H. Akaike. A new look at the statistical model identification. IEEE Trans-
actions on Automatic Control, 19:716–723, 1974.

[3] P.D. Allison. Survival analysis using the SAS system: a practical guide. SAS
Publishing, Cary, NC, U.S., 1995.

[4] H. Almuallim and T.G. Dietterich. Learning with many irrelevant features.
In Proceedings of the Ninth National Conference on Artificial Intelligence
(AAAI’91), volume 2, pages 547–552, Anaheim, California, 1991. AAAI
Press.

[5] R. Andrews, J. Diederich, and A.B. Tickle. A survey and critique of tech-
niques for extracting rules from trained neural networks. Knowledge Based
Systems, 8(6):373–389, 1995.

[6] R. Andrews and S. Geva. Inserting and extracting knowledge from con-
strained error back propagation networks. In Proceedings of the Sixth Aus-
tralian Conference on Neural Networks, Sydney, Australia, 1995.

[7] G. Arminger, D. Enache, and T. Bonne. Analyzing credit risk data: A com-
parison of logistic discrimination, classification tree analysis and feedforward
networks. Computational Statistics, 12(2):293–310, 1997.

[8] B. Baesens, M. Egmont-Petersen, R. Castelo, and J. Vanthienen. Learning
Bayesian network classifiers using Markov Chain Monte Carlo search. In
Proceedings of the Sixteenth International Conference on Pattern Recognition
(ICPR), pages 49–52, Québec, Canada, 2002. IEEE Computer Society.

[9] B. Baesens, C. Mues, R. Setiono, M. De Backer, and J. Vanthienen. Build-
ing intelligent credit scoring systems using decision tables. In Proceedings
of the Fifth International Conference on Enterprise Information Systems
(ICEIS’2003), pages 19–25, Angers, France, 2003.

191

192 Bibliography

[10] B. Baesens, R. Setiono, V. De Lille, S. Viaene, and J. Vanthienen. Neu-
ral network rule extraction for credit scoring. In Proceedings of the Pacific
Asian Conference on Intelligent Systems (PAIS), pages 128–132, Seoul, Ko-
rea, 2001.

[11] B. Baesens, R. Setiono, C. Mues, and J. Vanthienen. Using neural network
rule extraction and decision tables for credit-risk evaluation. Management
Science, 49(3):312–329, 2003.

[12] B. Baesens, T. Van Gestel, M. Stepanova, and J. Vanthienen. Neural network
survival analysis for personal loan data. In Proceedings of the Eighth Con-
ference on Credit Scoring and Credit Control (CSCCVII’2003), Edinburgh,
Scotland, 2003.

[13] B. Baesens, T. Van Gestel, S. Viaene, M. Stepanova, J. Suykens, and J. Van-
thienen. Benchmarking state of the art classification algorithms for credit
scoring. Journal of the Operational Research Society, 54(6):627–635, 2003.

[14] B. Baesens, G. Verstraeten, D. Van den Poel, M. Egmont-Petersen,
P. Van Kenhove, and J. Vanthienen. Bayesian network classifiers for iden-
tifying the slope of the customer lifecycle of long-life customers. European
Journal of Operational Research, 2003. forthcoming.

[15] B. Baesens, S. Viaene, D. Van den Poel, J. Vanthienen, and G. Dedene. Using
Bayesian neural networks for repeat purchase modelling in direct marketing.
European Journal of Operational Research, 138(1):191–211, 2002.

[16] B. Baesens, S. Viaene, T. Van Gestel, J.A.K. Suykens, G. Dedene,
B. De Moor, and J. Vanthienen. An initial approach to wrapped input
selection using least squares support vector machine classifiers: Some empir-
ical results. In Proceedings of the Twelfth Belgium-Netherlands Conference
on Artificial Intelligence (BNAIC), pages 69–76, Kaatsheuvel, The Nether-
lands, 2000.

[17] B. Baesens, S. Viaene, T. Van Gestel, J.A.K. Suykens, G. Dedene,
B. De Moor, and J. Vanthienen. An empirical assessment of kernel type per-
formance for least squares support vector machine classifiers. In Proceedings
of the Fourth International Conference on Knowledge-Based Intelligent En-
gineering Systems and Allied Technologies (KES), pages 313–316, Brighton,
UK, 2000.

[18] B. Baesens, S. Viaene, J. Vanthienen, and G. Dedene. Wrapped feature se-
lection by means of guided neural network optimisation. In A. Sanfeliu, J.J.
Villanueva, M.Vanrell, R. Alquezar, A.K. Jain, and J. Kittler, editors, Pro-
ceedings of The Fifteenth International Conference on Pattern Recognition,
pages 113–116, Barcelona, Spain, 2000. IEEE Computer Society.

[19] B. Bakker, H.J. Kappen, and T.M. Heskes. Improving cox survival analysis
with a neural-bayesian approach. Statistics in Medicine, 2003. forthcoming.

Bibliography 193

[20] J. Banasik, J.N. Crook, and L. Thomas. Does scoring a subpopulation make
a difference? International Review of Retail, Distribution and Consumer
Research, 6:180–195, 1996.

[21] J. Banasik, J.N. Crook, and L.C. Thomas. Not if but when will borrowers
default. Journal of the Operational Research Society, 50:1185–1190, 1999.

[22] J. Banasik, J.N. Crook, and L.C. Thomas. Sample selection bias in credit
scoring models. In Proceedings of the Seventh Conference on Credit Scoring
and Credit Control (CSCCVII’2001), Edinburgh, Scotland, 2001.

[23] R. Battiti. First- and second-order methods for learning: between steepest
descent and Newton’s method. Neural Computation, 44:141–166, 1992.

[24] S. Bedingfield and K.A. Smith. Evolutionary rule generation and its ap-
plication to credit scoring. In L. Reznik and V. Kreinovich, editors, Soft
Computing in Measurement and Information Acquisition, Heidelberg, 2001.
Physica-Verlag.

[25] E. Biganzoli, P. Boracchi, L. Mariani, and E. Marubini. Feed forward neu-
ral networks for the analysis of censored survival data: a partial logistic
regression approach. Statistics in Medicine, 17:1169–1186, 1998.

[26] C.M. Bishop. Neural networks for pattern recognition. Oxford University
Press, 1995.

[27] C.L. Blake and C.J. Merz. UCI repository of machine learning databases
[http://www.ics.uci.edu/˜mlearn/mlrepository.html]. Irvine, CA: Univer-
sity of California, Dept. of Information and Computer Science, 1998.

[28] B.V. Bonnlander. Nonparametric selection of input variables for connection-
ist learning. PhD thesis, University of Colorado, Department of Computer
Science, 1996.

[29] B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pages 144–152, Pittsburgh, U.S., 1992. ACM.

[30] L. Bottaci, P.J. Drew, J.E. Hartley, M.B. Hadfield, R. Farouk, P.W.R. Lee,
I.M.C. Macintyre, G.S. Duthie, and J.R.T. Monson. Artificial neural net-
works applied to outcome prediction for colorectal cancer patients in separate
institutions. The Lancet, 350:469–472, 1997.

[31] A.P. Bradley. The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recognition, 30:1145–1159, 1997.

[32] P.S. Bradley and O.L. Mangasarian. Feature selection via concave mini-
mization and support vector machines. In J. Shavlik, editor, Proceedings of
the Fifteenth International Conference on Machine Learning (ICML), San
Francisco, California, U.S., 1998. Morgan Kaufmann.

194 Bibliography

[33] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Re-
gression trees. Wadsworth and Brooks, Monterey, CA, 1994.

[34] N.E. Breslow. Covariance analysis of censored survival data. Biometrics,
30:89–99, 1974.

[35] J.S. Bridle. Neuro-computing: algorithms, architectures and applications,
chapter Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition. Springer-
Verlag, 1989.

[36] T. Bäck. Evolutionary algorithms. ACM SIGBIO Newsletter, pages 26–31,
1992.

[37] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University
Press, 1996.

[38] T. Bäck and H.P. Schwefel. An overview of evolutionary algorithms for
parameter optimization. Evolutionary Computation, 1(1):1–23, 1993.

[39] S.F. Brown, A. Branford, and W. Moran. On the use of artificial neural
networks for the analysis of survival data. IEEE Transactions on Neural
Networks, 8:1071–1077, 1997.

[40] H.B. Burke, P.H. Goodman, D.B. Rosen, D.E. Henson, J.N. Weinstein, F.E.
Harrell, J.R. Marks, D.P. Winchester, and D.G. Bostwick. Artificial neu-
ral networks improve the accuracy of cancer survival prediction. Cancer,
79(4):857–862, 1997.

[41] N. Capon. Credit scoring systems: A critical analysis. Journal of Marketing,
46:82–91, 1982.

[42] G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, and D.B. Rosen.
Fuzzy Artmap: A neural network architecture for incremental supervised
learning of analog multidimensional maps. IEEE Transactions on Neural
Networks, 3:698–713, 1992.

[43] G.C. Cawley. Matlab support vector machine toolbox (v054.β).
[http://theoval.sys.uea.ac.uk/∼gcc/svm/toolbox], University of East An-
glia, School of Information Systems, Norwich, Norfolk, U.K.

[44] K.C. Chang, R. Fung, A. Lucas, R. Oliver, and N. Shikaloff. Bayesian
networks applied to credit scoring. IMA Journal of Mathematics Applied in
Business and Industry, 11:1–18, 2000.

[45] P.K. Chintagunta. Variety seeking, purchase timing, and the lightning bolt
brand choice model. Management Science, 45(4):486–498, 1999.

Bibliography 195

[46] C.K. Chow and C.N. Liu. Approximating discrete probability distribu-
tions with dependence trees. IEEE Transactions on Information Theory,
14(3):462–467, 1968.

[47] O. Cordón, M.J. del Jesus, and F. Herrera. Genetic learning of fuzzy rule-
based classification systems cooperating with fuzzy reasoning methods. In-
ternational Journal of Intelligent Systems, 13(10-11):1025–1053, November
1998.

[48] O. Cordón, F. Herrera, F. Hoffmann, and L. Magdalena. Genetic Fuzzy Sys-
tems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. Ad-
vances in Fuzzy Systems. World Scientific, Singapore, 2001.

[49] D.R. Cox and D. Oakes. Analysis of survival data. Chapman and Hall,
London, U.K., 1984.

[50] M. Craven. Extracting Comprehensible Models from Trained Neural Net-
works. PhD thesis, Department of Computer Sciences, University of
Wisconsin-Madison, 1996.

[51] M. Craven and J. Shavlik. Understanding time-series networks: A case study
in rule extraction. International Journal of Neural Systems, 8(4):373–384,
1997.

[52] M.W. Craven and J.W. Shavlik. Using sampling and queries to extract
rules from trained neural networks. In W.W. Cohen and H. Hirsh, editors,
Proceedings of the Eleventh International Conference on Machine Learning
(ICML), San Francisco, CA, U.S., 1994. Morgan Kaufmann.

[53] M.W. Craven and J.W. Shavlik. Extracting tree-structured representations
of trained networks. In D. Touretzky, M. Mozer, and M. Hasselmo, editors,
Advances in Neural Information Processing Systems (NIPS), volume 8, pages
24–30, Cambridge, MA, U.S., 1996. MIT Press.

[54] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-
chines. Cambridge University Press, 2000.

[55] J.N. Crook. Who is discouraged from applying for credit? Economics
Letters, 65:165–172, 1999.

[56] R.M. Cyert and G.L. Thompson. Selecting a portfolio of credit risks by
markov chains. The Journal of Business, 1:34–46, 1968.

[57] M. De Laurentiis and P. Ravdin. Survival analysis of censored data: neural
network analysis detection of complex interactions between variables. Breast
Cancer Research and Treatment, 32:113–118, 1994.

[58] M. De Laurentiis and P.M. Ravdin. A technique for using neural net-
work analysis to perform survival analysis of censored data. Cancer Letters,
77:127–138, 1994.

196 Bibliography

[59] E.R. De Long, D.M. De Long, and D.L. Clarke-Pearson. Comparing the
areas under two or more correlated receiver operating characteristic curves:
a nonparametric approach. Biometrics, 44:837–845, 1988.

[60] J.E. Dennis Jr. and R.B. Schnabel. Numerical methods for unconstrained
optimization and nonlinear equations. Prentice Hall, New Jersey, 1983.

[61] V.S. Desai, D.G. Conway, J.N. Crook, and G.A. Overstreet Jr. Credit-
scoring models in the credit-union environment using neural networks and
genetic algorithms. IMA Journal of Mathematics Applied in Business and
Industry, 8:323–346, 1997.

[62] V.S. Desai, J.N. Crook, and G.A. Overstreet Jr. A comparison of neural net-
works and linear scoring models in the credit union environment. European
Journal of Operational Research, 95(1):24–37, 1996.

[63] T.G. Dietterich. Approximate statistical tests for comparing supervised clas-
sification learning algorithms. Neural Computation, 10(7):1895–1924, 1998.

[64] D.D. Dorfmann and E. Alf. Maximum likelihood estimation of parameters
of signal detection theory and determination of confidence intervals - rating-
method data. Journal of Mathematical Psychology, 6:487–496, 1969.

[65] J. Drew, D.R. Mani, A. Betz, and P. Datta. Targeting customers with
statistical and data mining techniques. Journal of Service Research, 3(3),
2001.

[66] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. John
Wiley, New York, 1973.

[67] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. John Wiley
and Sons, second edition, 2001.

[68] D. Durand. Risk elements in consumer installment financing. Studies in
Consumer Installment Financing: Study 8, National Bureau of Economic
Research, 1941.

[69] B. Efron. The efficiency of logistic regression compared to normal discrimi-
nant analysis. Journal of the American Statistical Society, 70:892–898, 1975.

[70] B. Efron. The efficiency of Cox’s likelihood function for censored data. Jour-
nal of the American Statistical Association, 72:557–565, 1977.

[71] B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman
and Hall, 1993.

[72] J.P. Egan. Signal Detection Theory and ROC analysis. Series in Cognition
and Perception. Academic Press, New York, 1975.

Bibliography 197

[73] M. Egmont-Petersen, A. Feelders, and B. Baesens. Learning Bayesian net-
work classifiers by minimizing the error rate using Markov Chain Monte
Carlo search. Work in Progress, 2003. submitted.

[74] R.A. Eisenbeis. Pitfalls in the application of discriminant analysis in busi-
ness, finance and economics. Journal of Finance, 32(3):875–900, 1977.

[75] R.A. Eisenbeis. Problems in applying discriminant analysis in credit scoring
models. Journal of Banking and Finance, 2:205–219, 1978.

[76] S.S. Erenguc and G.J. Koehler. Survey of mathematical programming mod-
els and experimental results for linear discriminant analysis. Managerial and
Decision Economics, 1990(11):215–225, 1990.

[77] B.S. Everitt. The analysis of contingency tables. Chapman and Hall, London,
1977.

[78] D. Faraggi, M. LeBlanc, and J. Crowley. Understanding neural networks
using regression trees: an application to multiple myeloma survival data.
Statistics in Medicine, 20(19):2965–2976, 2001.

[79] D. Faraggi and R. Simon. A neural network model for survival data. Statis-
tics in Medicine, 14:73–82, 1995.

[80] T. Fawcett. Using rule sets to maximize ROC performance. In Proceedings
of the IEEE International Conference on Data Mining, San Jose, California,
U.S., 2001.

[81] T. Fawcett and F. Provost. Adaptive fraud detection. Data Mining and
Knowledge Discovery, 1(3):291–316, 1997.

[82] U.M Fayyad, G.G. Grinstein, and A. Wierse. Information Visualization
in Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers,
2001.

[83] U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-
valued attributes for classification learning. In Proceedings of the Thir-
teenth International Joint Conference on Artificial Intelligence (IJCAI),
pages 1022–1029, Chambéry, France, 1993. Morgan Kaufmann.

[84] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Ad-
vances in Knowledge Discovery and Data Mining. MIT Press, Cambridge,
MA, 1996.

[85] A. Feelders. Credit scoring and reject inference with mixture models. In-
ternational Journal of Intelligent Systems in Accounting, Finance and Man-
agement, 9:1–8, 2000.

198 Bibliography

[86] A.J. Feelders, A.J.F. le Loux, and J.W. van ’t Zand. Data mining for loan
evaluation at ABN Amro: A case study. In Proceedings of the First Inter-
national Conference on Knowledge Discovery and Data Mining (KDD-95),
pages 106–111, 1995.

[87] R.A. Fisher. Contributions to Mathematical Statistics. John Wiley and Sons,
New York, shewhart, w.a. edition, 1950.

[88] T.C. Fogarty, N.S. Ireson, and S.A. Battles. Developing rule based systems
for credit card applications from data with genetic algorithms. IMA Journal
of Mathematics Applied In Business and Industry, 4:53–59, 1992.

[89] N. Freed and F. Glover. Simple but powerful goal programming models for
discriminant problems. European Journal of Operational Research, 7:44–60,
1981.

[90] N. Freed and F. Glover. Resolving certain difficulties and improving classi-
fication power of LP discriminant analysis formulations. Decision Sciences,
1986(17):589–595, 1986.

[91] Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. In
Proceedings of the Thirteenth International Conference on Machine Learning
(ICML’96), pages 148–156, 1996.

[92] J. Friedman. Regularized discriminant analysis. Journal of the American
Statistical Association, 84:165–175, 1989.

[93] J.H. Friedman and W. Stuetzle. Projection pursuit regression. Journal of
the American Statistical Association, 76:817–823, 1981.

[94] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers.
Machine Learning, 29:131–163, 1997.

[95] H. Frydman, J.G. Kallberg, and D.L. Kao. Testing the adequacy of Markov
chains and mover-stayer models as representations of credit behaviour. Op-
erations Research, 33:1203–1214, 1985.

[96] J.J. Glen. Classification accuracy in discriminant analysis: a mixed inte-
ger programming approach. Journal of the Operational Research Society,
52:328–339, 2001.

[97] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, 1989.

[98] F. Gönül and M.Z. Shi. Optimal mailing of catalogs: a new methodology
using estimable structural dynamic programming models. Management Sci-
ence, 44(9):1249–1262, 1998.

[99] A. González and R. Pérez. Completeness and consistency conditions for
learning fuzzy rules. Fuzzy Sets and Systems, 96:37–51, 1998.

Bibliography 199

[100] A. González and F. Herrera. Multi-stage genetic fuzzy systems based on the
iterative rule learning approach. Mathware & Soft Computing, 4:233–249,
1997.

[101] W. Greene. Sample selection in credit-scoring models. Japan and the World
Economy, 10:299–316, 1998.

[102] A. Gupta, S. Park, and S.M. Lam. Generalized analytic rule extraction for
feedforward neural networks. IEEE Transactions on Knowledge and Data
Engineering, 11(6):985–991, 1998.

[103] S.K. Halgamuge and M. Glesner. Neural networks in designing fuzzy systems
for real world applications. Fuzzy Sets and Systems, 65:1–12, 1994.

[104] D.J. Hand. Reject inference in credit operations. In E.F. Mays, editor, Credit
Risk Modelling: Design and Application. Glenlake Publishing, 1998.

[105] D.J. Hand and W.E. Henley. Statistical classification methods in consumer
risk. Journal of the Royal Statistical Society, Series A, 160:523–541, 1997.

[106] D.J. Hand and S.D. Jacka. Discrimination and Classification. Wiley, 1981.

[107] D.J. Hand and S.D. Jacka. Statistics in Finance. Edward Arnold, 1998.

[108] D.J. Hand, K.J. McConway, and E. Stanghellini. Graphical models of ap-
plicants for credit. IMA Journal of Mathematics Applied In Business and
Industry, 8:143–155, 1997.

[109] D.J. Hand and R.J. Till. A simple generalisation of the area under the ROC
curve for multiple class classification problems. Machine Learning, 45:171–
186, 2001.

[110] J.A. Hanley and B.J. McNeil. The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology, 148:839–843, 1983.

[111] J.A. Hanley and B.J. McNeil. A method of comparing the areas under re-
ceiver operating characteristic curves derived from the same cases. Radiology,
148:839–843, 1983.

[112] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing, Data Mining, Inference, and Prediction. Springer, 2001.

[113] B. Hauser. The Direct Marketing Handbook, chapter List segmentation,
pages 233–247. 1992.

[114] Y. Hayashi, R. Setiono, and K. Yoshida. A comparison between two neural
network rule extraction techniques for the diagnosis of hepatobiliary disor-
ders. Artificial Intelligence in Medicine, 20:205–216, 2000.

[115] K. Helsen and D.C. Schmittlein. Evidence for the effectiveness of hazard
rate models. Marketing Science, 11(4):395–414, 1993.

200 Bibliography

[116] W.E. Henley. Statistical Aspects of Credit Scoring. PhD thesis, The Open
University, Milton Keynes, UK, 1995.

[117] W.E. Henley and D.J. Hand. Construction of a k-nearest neighbour credit-
scoring system. IMA Journal of Mathematics Applied In Business and In-
dustry, 8:305–321, 1997.

[118] F. Hoffmann. Boosting a genetic fuzzy classifier. In Proceedings of the
Joint Ninth IFSA World Congress and Twentieth NAFIPS International
Conference, pages 1564–1569, Vancouver, Canada, July 2001.

[119] F. Hoffmann. Combining boosting and evolutionary algorithms for learning
of fuzzy classification rules. Fuzzy Sets and Systems, 2003. forthcoming.

[120] F. Hoffmann, B. Baesens, J. Martens, F. Put, and J. Vanthienen. Comparing
a genetic fuzzy and a neurofuzzy classifier for credit scoring. In Proceedings
of the Fifth International FLINS Conference on Computational Intelligent
Systems for Applied Research, pages 355–362, Ghent, Belgium, 2002.

[121] F. Hoffmann, B. Baesens, J. Martens, F. Put, and J. Vanthienen. Comparing
a genetic fuzzy and a neurofuzzy classifier for credit scoring. International
Journal of Intelligent Systems, 17(11):1067–1083, 2002.

[122] R.C. Holte. Very simple classification rules perform well on most commonly
used datasets. Machine Learning, 3:63–91, 1993.

[123] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5):359–366, 1989.

[124] H. Ishibuchi, T. Nakashima, and T. Morisawa. Voting in fuzzy rule-based
systems for pattern classification problems. Fuzzy Sets and Systems, 103:223–
238, 1999.

[125] H. Ishibuchi, T. Nakashima, and R. Murata. Three-objective genetics-based
machine learning for linguistic rule extraction. Information Sciences, 136(1-
4):109–133, 2001.

[126] D.C. Jain and N.J. Vilcassim. Investigating household purchase timing deci-
sions: a conditional hazard function approach. Marketing Science, 10(1):1–
23, 1991.

[127] J.S.R. Jang. Anfis: Adaptive network based fuzzy inference systems. IEEE
Transactions on Systems, Man and Cybernetics, 23:665–685, 1993.

[128] D.N. Joannes. Reject inference applied to logistic regression for credit scor-
ing. IMA Journal of Mathematics Applied in Business and Industry, 5:35–43,
1993.

Bibliography 201

[129] G. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset
selection problem. In H. Hirsh and W. Cohen, editors, Proceedings of the
Eleventh International Conference on Machine Learning (ICML), pages 121–
129, San Francisco, 1994. Morgan Kaufmann.

[130] G.H. John and P. Langley. Estimating continuous distributions in Bayesian
classifiers. In Proceedings of the Eleventh Conference on Uncertainty in Ar-
tificial Intelligence (UAI), pages 338–345, Montreal, Québec, Canada, 1995.
Morgan Kaufmann.

[131] I.T. Jollife. Principal Component Analysis. Springer-Verlag, New York, 1986.

[132] L. Junco and L. Sanchez. Using the Adaboost algorithm to induce fuzzy
rules in classification problems. In Proceedings of the Spanish Conference
for Fuzzy Logic and Technologies (ESTYLF 2000), pages 297–301, Sevilla,
Spain, September 2000.

[133] J.D. Kalbfleisch and R.L. Prentice. The statistical analysis of failure time
data. Wiley, New York, 1980.

[134] E.L. Kaplan and P. Meier. Nonparametric estimation from incomplete obser-
vations. Journal of the American Statistical Association, 53:457–481, 1958.

[135] M.G. Kelly. Tackling Change and Uncertainty in Credit Scoring. PhD thesis,
The Open University, Milton Keynes, UK, 1998.

[136] M.G. Kelly and D.J. Hand. Credit scoring with uncertain class definitions.
IMA Journal of Mathematics Applied in Business and Industry, 10:331–345,
1999.

[137] R. Kerber. Chimerge: Discretization of numeric attributes. In Proceedings
of the Ninth National Conference on AI, pages 123–128, San Jose, CA, U.S.,
1992. AAAI Press, The MIT Press.

[138] K. Kira and L. Rendell. The feature selection problem: Traditional methods
and a new algorithm. In Proceedings of the Tenth National Conference on
Artificial Intelligence (AAAI’92), pages 129–134, San Jose, CA, U.S., 1992.
AAAI Press.

[139] R. Kohavi. Wrappers for performance enhancement and oblivious decision
graphs. PhD thesis, Department of Computer Science, Stanford University,
1995.

[140] P. Kolesar and J.L. Showers. A robust credit screening model using categor-
ical data. Management Science, 31:123–133, 1985.

[141] J.B. Jr. Kruskal. On the shortest spanning subtree of a graph and the
travelling salesman problem. In Proceedings of the American Mathematics
Society, volume 7, pages 48–50, 1956.

202 Bibliography

[142] J.T. Kwok. The evidence framework applied to support vector machines.
IEEE Transactions on Neural Networks, 10(5):1018–1031, 2000.

[143] P. Langley, W. Iba, and K. Thompson. An analysis of Bayesian classifiers.
In Proceedings of the Tenth National Conference on Artificial Intelligence
(AAAI’92), pages 223–228, San Jose, CA, U.S., 1992. AAAI Press.

[144] P. Lapuerta, S.P. Azen, and L. LaBree. Use of neural networks in predicting
the risk of coronary artery disease. Computers and Biomedical Research,
28:38–52, 1995.

[145] S.L. Lauritzen and D.J. Spiegelhalter. Local computations with probabil-
ities on graphical structures and their application to expert systems (with
discussion). Journal of the Royal Statistical Society, Series B, 50:157–224,
1988.

[146] K.J. Leonard. The development of a rule based expert system model for
fraud alert in consumer credit. European Journal of Operational Research,
80:350–356, 1995.

[147] H. Levene. Contributions to probability and statistics: Essays in honor of
Harold Hotelling, eighth edition. Iowa State University Press, I. Olkin et al.
eds, pp. 278-292, 1960.

[148] H.G. Li and D.J. Hand. Direct versus indirect credit scoring classifications.
Journal of the Operational Research Society, 53(6):637–647, 1997.

[149] L.H. Liebman. A Markov decision model for selecting optimal credit control
policies. Management Science, 18(10):519–525, 1972.

[150] K. Liestøl, P.K. Andersen, and U. Andersen. Survival analysis and neural
nets. Statistics in Medicine, 13:1189–1200, 1994.

[151] T.S. Lim, W.Y. Loh, and Y.S. Shih. A comparison of prediction accuracy,
complexity and training time of thirty-three old and new classification algo-
rithms. Machine Learning, 40(3):203–228, 2000.

[152] H. Liu and R. Setiono. Chi2: feature selection and discretization of numeric
attributes. In Proceedings of the Seventh IEEE International Conference on
Tools with Artificial Intelligence (ICTAI), pages 388–391, 1995.

[153] H. Liu and S.T. Tan. X2R: a fast rule generator. In Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, pages 631–635,
Vancouver, Canada, 1995. IEEE Press.

[154] D.J.C. MacKay. Bayesian methods for Adaptive Models. PhD thesis, Com-
putation and Neural Systems, California Institute of Technology, Pasadena,
CA, U.S., 1992.

Bibliography 203

[155] D.J.C. MacKay. The evidence framework applied to classification networks.
Neural Computation, 4(5):720–736, 1992.

[156] L. Magdalena and F. Monasterio. Evolutionary-based learning applied to
fuzzy controllers. In Proceedings of the Fourth IEEE International Confer-
ence on Fuzzy Systems and the Second International Fuzzy Engineering Sym-
posium, (FUZZ-IEEE/IFES’95), volume 3, pages 1111–1118, March 1995.

[157] R. Malhotra and D.K. Malhotra. Differentiating between good credits and
bad credits using neuro-fuzzy systems. European Journal of Operational
Research, 136:190–211, 2002.

[158] O.L. Mangasarian. Linear and nonlinear separation of patterns by linear
programming. Operations Research, 1965(13):444–452, 1965.

[159] D.R. Mani, J. Drew, A. Betz, and P. Datta. Statistics and data mining tech-
niques for lifetime value modeling. In Proceedings of the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD),
pages 94–103, San Diego, CA, U.S., 1999.

[160] L. Mariani, D. Coradini, E. Biganzoli, P. Boracchi, E. Marubini, S. Pilotti,
B. Salvadori, R. Silvestrini, U. Veronesi, R. Zucali, and F. Rilke. Prognostic
factors for metachronous contralateral breast cancer: a comparison of the
linear Cox regression model and its artificial neural network extension. Breast
Cancer Research and Treatment, 44:167–178, 1997.

[161] E. Marubini and M.G. Valsecchi. Analysing Survival Data from Clinical
Trials and Observational Studies. Statistics in Practice. John Wiley and
Sons, Chicester, England, 1995.

[162] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K. R. Müller. Fisher
discriminant analysis with kernels. In Y.H. Hu, J. Larsen, E. Wilson, and
S. Douglas, editors, Proceedings of the IEEE Neural Networks for Signal
Processing (NNSP) Workshop, pages 41–48, Madison, Wisconsin, U.S., 1999.
IEEE.

[163] T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[164] J.E. Moody. Note on generalization, regularization, and architecture se-
lection in nonlinear learning systems. In Proceedings of the First IEEE-SP
Workshop on Neural Networks for Signal Processing, pages 1–10, Los Alami-
tos, CA, 1991. IEEE Computer Society Press.

[165] C. Mues. On the Use of Decision Tables and Diagrams in Knowledge Model-
ing and Verification. PhD thesis, Department of Applied Economic Sciences,
Katholieke Universiteit Leuven, 2002.

[166] N. Murata, S. Yoshizawa, and S.I. Amari. Network information criterion-
determining the number of hidden units for an artificial neural network
model. IEEE Transactions on Neural Networks, 5(6):865–872, 1994.

204 Bibliography

[167] P.M. Murphy and M.J. Pazzani. ID2-of-3: Constructive induction of M-of-N
concepts for discriminators in decision trees. In Proceedings of the Eighth
International Machine Learning Workshop, pages 183–187, Evanston, IL,
U.S., 1991. Morgan Kaufmann.

[168] I.T. Nabney. NETLAB: Algorithms for Pattern Recognition. Springer Verlag,
2001.

[169] B. Narain. Survival analysis and the credit granting decision. In L.C.
Thomas, J.N. Crook, and D.B. Edelman, editors, Credit Scoring and Credit
Control, pages 109–121. Oxford University Press, 1992.

[170] D. Nauck. Data analysis with neuro-fuzzy methods. Habilitation Thesis,
University of Magdeburg, 2000.

[171] D. Nauck, F. Klawonn, and R. Kruse. Foundations of Neuro-Fuzzy Systems.
Wiley, New York, 1997.

[172] D. Nauck and R. Kruse. A neuro-fuzzy method to learn fuzzy classification
rules from data. Fuzzy Sets and Systems, 89:277–288, 1997.

[173] D. Nauck and R. Kruse. Neuro-fuzzy systems for function approximation.
Fuzzy Sets and Systems, 101:261–271, 1999.

[174] L. Ohno-Machado. Sequential use of neural networks for survival prediction
in Aids. Journal of the American Medical Informatics Association, 3:170–
174, 1996.

[175] L. Ohno-Machado and M.A. Musen. Modular neural networks for medical
prognosis: quantifying the benefits of combining neural networks for survival
prediction. Connection Science, 9(1):71–86, 1997.

[176] J. Pearl. Probabilistic reasoning in Intelligent Systems: networks for plausi-
ble inference. Morgan Kaufmann, 1988.

[177] K. Pelckmans, J.A.K. Suykens, T. Van Gestel, J. De Brabanter, L. Lukas,
B. Hamers, B. De Moor, and J. Vandewalle. LS-SVMlab : a Matlab/C
toolbox for least squares support vector machines. Technical Report 02-44,
ESAT-SISTA, K.U.Leuven (Leuven, Belgium), 2002.

[178] S. Piramuthu. Feature selection for financial credit-risk evaluation decisions.
Informs Journal on Computing, 11(3):258–266, 1999.

[179] S. Piramuthu. Financial credit-risk evaluation with neural and neurofuzzy
systems. European Journal of Operational Research, 112(2):310–321, 1999.

[180] J. Platt. Fast training of support vector machines using sequential minimal
optimization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances
in Kernel Methods - Support Vector Learning. MIT Press, 1999.

Bibliography 205

[181] J. Platt. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In A. Smola, P. Bartlett, B. Schölkopf, and
D. Schuurmans, editors, Advances in Large Margin Classifiers, Cambridge,
MA, 1999. MIT Press.

[182] R.L. Prentice and L.A. Gloeckler. Regression analysis of grouped survival
data with application to breast cancer data. Biometrics, 34:57–67, 1978.

[183] S.J. Press and S. Wilson. Choosing between logistic regression and discrimi-
nant analysis. Journal of the American Statistical Association, 73(364):699–
705, 1978.

[184] F. Provost and P. Domingos. Well-trained PETS: Improving probability
estimation trees. CDER Working Paper 00-04, Stern School of Business,
New York University, New York, U.S., 2000.

[185] F. Provost, T. Fawcett, and R. Kohavi. The case against accuracy estimation
for comparing classifiers. In J. Shavlik, editor, Proceedings of the Fifteenth
International Conference on Machine Learning (ICML), pages 445–453, San
Francisco, CA, U.S., 1998. Morgan Kaufmann.

[186] J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106,
1986.

[187] J.R. Quinlan. C4.5 programs for machine learning. Morgan Kaufmann,
1993.

[188] P. Rao. Nonparametric Functional Estimation. Academic Press, Orlando,
1983.

[189] P.M. Ravdin and G.M. Clark. A practical application of neural network
analysis for predicting outcome of individual breast cancer patients. Breast
Cancer Research and Treatment, 22:285–293, 1992.

[190] R. Reed. Pruning algorithms-a survey. IEEE Transactions on Neural Net-
works, 4(5):740–747, 1993.

[191] A.P.N. Refenes and A.D. Zapranis. Neural network model identification,
variable selection and model adequacy. Journal of Forecasting, 18:299–332,
1999.

[192] M.D. Richard and R.P. Lippmann. Neural network classifiers estimate
Bayesian a-posteriori probabilities. Neural Computation, 3(4):461–483, 1991.

[193] B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge Univer-
sity Press, 1996.

[194] B.D. Ripley and R.M. Ripley. Artificial Neural Networks: Prospects for
Medicine, chapter Neural networks as statistical methods in survival analy-
sis. Landes Biosciences Publishers, 1998.

206 Bibliography

[195] R.M. Ripley. Neural network models for breast cancer prognosis. PhD thesis,
University of Oxford, Department of Engineering Science, U.K., 1998.

[196] E. Rosenberg and A. Gleit. Quantitative methods in credit management: a
survey. Operations Research, 42:589–613, 1994.

[197] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition, volume 1, chapter
Learning internal representations by error propagation, pages 318–362. MIT
Press, Reprinted in Anderson and Rosenfeld, Cambridge, MA, U.S., 1986.

[198] M. Saerens, P. Latinne, and C. Decaestecker. Adjusting the outputs of a clas-
sifier to new a priori probabilities: A simple procedure. Neural Computation,
14:21–41, 2001.

[199] L. Santos-Gomez and M.J. Darnel. Empirical evaluation of decision tables
for constructing and comprehending expert system rules. Knowledge Acqui-
sition, 4:427–444, 1992.

[200] B. Schölkopf, C. Burges, and A. Smola. Advances in Kernel Methods -
Support Vector Learning. MIT Press, Cambridge, MA, U.S., 1998.

[201] S. Sestito and T. Dillon. Automated Knowledge Acquisition. Prentice Hall,
1994.

[202] R. Setiono. A neural network construction algorithm which maximizes the
likelihood function. Connection Science, 7(2):147–166, 1995.

[203] R. Setiono. Extracting rules from neural networks by pruning and hidden-
unit splitting. Neural Computation, 9(1):205–225, 1997.

[204] R. Setiono. A penalty function approach for pruning feedforward neural
networks. Neural Computation, 9(1):185–204, 1997.

[205] R. Setiono. Generating concise and accurate classification rules for breast
cancer diagnosis. Artificial Intelligence in Medicine, 18(3):205–219, 2000.

[206] R. Setiono and W.K. Leow. FERNN: an algorithm for fast extraction of
rules from neural networks. Applied Intelligence, 12(1/2):15–25, 2000.

[207] R. Setiono, W.K. Leow, and J.M. Zurada. Extraction of rules from artifi-
cial neural networks for nonlinear regression. IEEE Transactions on Neural
Networks, 13(3):564–577, 2002.

[208] R. Setiono and H. Liu. Symbolic representation of neural networks. IEEE
Computer, 29(3):71–77, 1996.

[209] R. Setiono and H. Liu. Neural-network feature selector. IEEE Transactions
on Neural Networks, 8(3):654–662, 1997.

Bibliography 207

[210] R. Setiono and H. Liu. Neurolinear: from neural networks to oblique decision
rules. Neurocomputing, 17(1):1–24, 1997.

[211] R. Setiono, J.Y.L. Thong, and C. Yap. Symbolic rule extraction from neural
networks: An application to identifying organizations adopting IT. Infor-
mation and Management, 34(2):91–101, 1998.

[212] P. Sewart and J. Whittaker. Fitting graphical models to credit scoring data.
IMA Journal of Mathematics Applied in Business and Industry, 9:241–266,
1998.

[213] D.J. Sheskin. Handbook of Parametric and Nonparametric Statistical Proce-
dures. Chapman and Hall, second edition, 2000.

[214] B.W. Silverman. Density Estimation for Statistics and Data Analysis. Chap-
man and Hall, New York, NY, 1986.

[215] M. Smith. Neural networks for statistical modelling. Van Nostrand Reinhold,
1993.

[216] A. Smola and B. Schölkopf. On a kernel-based method for pattern recog-
nition, regression, approximation and operator inversion. Algorithmica,
22:211–231, 1998.

[217] G.W. Snedecor and W.G. Cochran. Statistical Methods. Iowa State Univer-
sity Press, eighth edition, 1989.

[218] S.A. Solla, E. Levin, and M. Fleisher. Accelerated learning in layered neural
networks. Complex Systems, 2:625–640, 1988.

[219] E. Stanghellini, K.J. McConway, and D.J. Hand. A chain graph for appli-
cants for bank credit. Journal of the Royal Statistical Society, Series C,
48:239–251, 1999.

[220] A. Steenackers and M.J. Goovaerts. A credit scoring model for personal
loans. Insurance: Mathematics and Economics, 8:31–34, 1989.

[221] M. Stepanova and L.C. Thomas. PHAB scores: proportional hazards
analysis behavioural scores. Journal of the Operational Research Society,
52(9):1007–1016, 2001.

[222] M. Stepanova and L.C. Thomas. Survival analysis methods for personal loan
data. Operations Research, 50(2):277–289, 2002.

[223] W.N. Street. A neural network model for prognostic prediction. In Proceed-
ings of the Fifteenth International Conference on Machine Learning (ICML),
pages 540–546, Madison, Wisconsin, U.S., 1998. Morgan Kaufmann.

208 Bibliography

[224] J.A.K. Suykens, L. Lukas, P. Van Dooren, B. De Moor, and J. Vandewalle.
Least squares support vector machine classifiers: a large scale algorithm. In
Proceedings of the Fourteenth European Conference on Circuits Theory and
Design (ECCTD), pages 839–842, Stresa, Italy, 1999.

[225] J.A.K. Suykens, L. Lukas, and J. Vandewalle. Sparse least squares support
vector machine classifiers. In Proceedings of the Eighth European Symposium
on Artificial Neural Networks (ESANN), Bruges, Belgium, 2000.

[226] J.A.K. Suykens and J. Vandewalle. Nonlinear Modeling: advanced black-box
techniques. Kluwer Academic Publishers, Boston, 1998.

[227] J.A.K. Suykens and J. Vandewalle. Least squares support vector machine
classifiers. Neural Processing Letters, 9(3):293–300, 1999.

[228] J.A.K. Suykens and J. Vandewalle. Multiclass least squares support vector
machines. In Proceedings of the International Joint Conference on Neural
Networks (IJCNN), Washington DC, U.S., 1999.

[229] J.A.K. Suykens and J. Vandewalle. Training multilayer perceptron classifiers
based on a modified support vector method. IEEE Transactions on Neural
Networks, 10:907–912, 1999.

[230] J.A. Swets. ROC analysis applied to the evaluation of medical imaging
techniques. Investigative Radiology, 14:109–121, 1979.

[231] J.A. Swets and R.M. Pickett. Evaluation of Diagnostic Systems: Methods
from Signal Detection Theory. Academic Press, New York, 1982.

[232] I.A. Taha and J. Ghosh. Symbolic interpretation of artificial neural net-
works. IEEE Transactions on Knowledge and Data Engineering, 11(3):448–
463, 1999.

[233] L. Tarassenko, R. Whitehouse, G. Gasparini, and A. Harris. Neural net-
work prediction of relapse in breast cancer patients. Neural Computing and
Applications, 4(2):106–114, 1996.

[234] L.C. Thomas. A survey of credit and behavioural scoring: forecasting fi-
nancial risk of lending to customers. International Journal of Forecasting,
16:149–172, 2000.

[235] L.C. Thomas, D.B. Edelman, and J.N. Crook. Credit Scoring and Its Appli-
cations. SIAM Monographs on Mathematical Modeling and Computation,
Philadelphia, U.S., 2002.

[236] S. Thrun. Extracting rules from artificial neural networks with distributed
representations. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances
in Neural Information Processing Systems (NIPS), volume 7, Cambridge,
MA, U.S., 1995. MIT Press.

Bibliography 209

[237] G.G. Towell and J.W. Shavlik. Extracting refined rules from knowledge-
based neural networks. Machine Learning, 13:71–101, 1993.

[238] N. Tschichold-Gurman. Generation and improvement of fuzzy classifiers
with incremental learning using fuzzy RuleNet. In K. George, J.H. Car-
rol, E. Deaton, D. Oppenheim, and J. Hightower, editors, Proceedings of
the ACM Symposium on Applied Computing, pages 466–470, Nashville, NY,
U.S., 1995. ACM Press.

[239] D. Van den Poel. Response Modeling for Database Marketing using Binary
Classification. PhD thesis, K.U.Leuven, 1999.

[240] T. Van Gestel. From Linear to Kernel Based Methods for Classification,
Modelling and Prediction. PhD thesis, Department of Electrical Engineering,
Katholieke Universiteit Leuven, 2002.

[241] T. Van Gestel, B. Baesens, J. Suykens, D.E. Baestaens, J. Vanthienen, and
B. De Moor. Bankruptcy prediction with least squares support vector ma-
chine classifiers. In Proceedings of the International Conference on Com-
putational Intelligence for Financial Engineering (CIFEr2003), pages 1–8,
Hong Kong, 2003.

[242] T. Van Gestel, J. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene,
B. De Moor, and J. Vandewalle. Benchmarking least squares support vector
machine classifiers. Machine Learning, 2003. forthcoming.

[243] T. Van Gestel, J.A.K. Suykens, D.E. Baestaens, A. Lambrechts, G. Lanck-
riet, B. Vandaele, B. De Moor, and J. Vandewalle. Predicting financial
time series using least squares support vector machines within the evidence
framework. IEEE Transactions on Neural Networks, 12(4):809–821, 2001.

[244] T. Van Gestel, J.A.K. Suykens, G. Lanckriet, A. Lambrechts, B. De Moor,
and J. Vandewalle. A Bayesian framework for least squares support vector
machine classifiers. Neural Computation, 15(4):1115–1147, 2002.

[245] J. Vanthienen and E. Dries. Illustration of a decision table tool for specify-
ing and implementing knowledge based systems. International Journal on
Artificial Intelligence Tools, 3(2):267–288, 1994.

[246] J. Vanthienen and E Dries. A branch and bound algorithm to optimize
the representation of tabular decision processes. research report 9602,
K.U.Leuven, 1996.

[247] J. Vanthienen, C. Mues, and A. Aerts. An illustration of verification and
validation in the modelling phase of KBS development. Data and Knowledge
Engineering, 27:337–352, 1998.

[248] J. Vanthienen and G. Wets. From decision tables to expert system shells.
Data and Knowledge Engineering, 13(3):265–282, 1994.

210 Bibliography

[249] J. Vanthienen, G. Wets, and G. Chen. Incorporating fuzziness in the classical
decision table formalism. Intelligent Systems, 11:879–891, 1996.

[250] V. Vapnik. The nature of statistical learning theory. Springer-Verlag, New-
York, U.S., 1995.

[251] V. Vapnik. Nonlinear Modeling: advanced black-box techniques, chapter The
support vector method of function estimation, pages 55–85. 1998.

[252] V. Vapnik. Statistical learning theory. John Wiley, New-York, U.S., 1998.

[253] G. Verstraeten, B. Baesens, D. Van den Poel, M. Egmont-Petersen,
P. Van Kenhove, and J. Vanthienen. Targeting long-life customers: Towards
a segmented CRM approach. In Proceedings of the Thirty-First European
Marketing Academy Conference (EMAC2002), Braga, Portugal, 2002.

[254] S. Viaene, B. Baesens, D. Van den Poel, G. Dedene, and J. Vanthienen.
Wrapped input selection using multilayer perceptrons for repeat-purchase
modeling in direct marketing. International Journal of Intelligent Systems
in Accounting, Finance and Management, 10(2):115–126, 2001.

[255] S. Viaene, B. Baesens, T. Van Gestel, J.A.K. Suykens, D. Van den Poel,
J. Vanthienen, B. De Moor, and G. Dedene. Knowledge discovery in a direct
marketing case using least squares support vector machines. International
Journal of Intelligent Systems, 16(9):1023–1036, 2001.

[256] S. Viaene, R. Derrig, B. Baesens, and G. Dedene. A comparison of state-of-
the-art classification techniques for expert automobile insurance fraud de-
tection. Journal of Risk And Insurance (Special Issue on Fraud Detection),
69(3):433–443, 2002.

[257] V. Vinciotti and D.J. Hand. Scorecard construction with unbalanced class
sizes. Submitted for Publication, 2002.

[258] G. Weiss and F. Provost. The effect of class distribution on classifier learning.
Technical Report ML-TR 43, Department of Computer Science, Rutgers
University, New Jersey, U.S., 2001.

[259] D. West. Neural network credit scoring models. Computers and Operations
Research, 27:1131–1152, 2000.

[260] G. Wets. Decision Tables in Knowledge-Based Systems: Adding Knowledge
Discovery and Fuzzy Concepts to the Decision Table Formalism. PhD thesis,
Department of Applied Economic Sciences, Catholic University of Leuven,
Belgium, 1998.

[261] J.C. Wiginton. A note on the comparison of logit and discriminant models of
consumer credit behaviour. Journal of Financial and Quantitative Analysis,
15:757–770, 1980.

Bibliography 211

[262] G. Wilkinson. How credit scoring really works? In L.C. Thomas, J.N.
Crook, and D.B. Edelman, editors, Credit Scoring and Credit Control, pages
141–160, Oxford, 1992. Oxford University Press.

[263] I.H. Witten and E. Frank. Data mining: practical machine learning tools and
techniques with Java implementations. Morgan Kaufmann, San Francisco,
2000.

[264] M.B. Yobas, J.N. Crook, and P. Ross. Credit scoring using neural and
evolutionary techniques. IMA Journal of Mathematics Applied in Business
and Industry, 11:111–125, 2000.

[265] L.A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

[266] H.J. Zimmermann. Fuzzy set Theory and its Applications. Kluwer Academic
Publishers, Dordrecht, second edition, 1991.

[267] J.M. Zurada. Introduction to artificial neural systems. PWS Publishing
Company, Boston, 1995.

[268] B. Zuypan, J. Demsar, M. Kattan, R. Beck, and I. Bratko. Machine learning
for survival analysis: a case study on recurrence of prostate cancer. Artificial
Intelligence in Medicine, 20:59–75, 2000.

212

CURRICULUM VITAE BART BAESENS

Personal Data

Surname Baesens
First Name Bart Maurice Marcella
Born February 27, 1975 (Bruges, Belgium)
Nationality Belgian
Civil state Married to Katrien Denys

Address
Bart Baesens
Katholieke Universiteit Leuven
Department of Applied Economic Sciences
Naamsestraat 69
B-3000 Leuven
Belgium
tel. 003216326884
fax. 003216326732
Bart.Baesens@econ.kuleuven.ac.be

Education

Secondary School
Sint-Leocollege (Bruges, Belgium) (1987-1993) Type II secundair onderwijs, Weten-
schappelijke A

Higher Education
Commercial Engineer in Management Informatics, K.U.Leuven (1993-1998): Magna
Cum Laude

PhD in Applied Economic Sciences
Public defence planned: September 24, 2003

Research Interests

My research deals with the use of data mining and machine learning techniques to
tackle management science problems such as customer scoring, bankruptcy predic-
tion, customer lifetime value estimation, churn prediction, I hereby consider
both the technical theoretical part as well as the practical implementation details.
Some key words describing my research are: management information systems;
data mining; machine learning; decision support systems; customer scoring; pat-
tern recognition; classification; survival analysis.

213

Organizational Activities

• I am the secretary and member of the board of directors of the VZW Con-
tactgroep Beleidsinformatica (CBL) since December 2000. CBL is an asso-
ciation of graduated information systems students and has approximately
150 members. It publishes a quarterly journal and organises conferences on
state-of-the-art ICT trends.

• Together with the University Center for Statistics at the K.U.Leuven, I or-
ganized and planned the course ”Data Mining: Searching for Knowledge in
Your Data” which took place on January, 14th, 15th, 17th, 21st, 22th, 24th,
2002 and was repeated on September, 3rd, 5th, 9th, 10th, 2002. The courses
have on average 20 students (both business people and academicians).

• I am a member of the SAS Belgium and Luxembourg Users Group (BLUES)
Committee since October 24th, 2002. This committee consists of a number
of academicians and business people which together help to plan SAS events
such as the annual BLUES conference.

• Together with my promotor, prof. dr. Jan Vanthienen, we organised the
Credit Scoring Workshop at the K.U.Leuven on March 11th, 2003. This
workshop was attended by approximately 30 people, both academicians and
business people (mainly from financial institutions). I also gave a lecture as
part of this workshop.

• I co-chaired a session on classification and data mining for the Fifth Interna-
tional FLINS Conference on Computational Intelligent Systems for Applied
Research (FLINS’2002) in Ghent, Belgium.

• I chaired a session on artificial intelligence and decision support systems
for the Fifth International Conference on Enterprise Information Systems
(ICEIS’2003) in Angers, France.

• I am organising a special session on Data Analysis for the Eighth Online
World Conference on Soft Computing in Industrial Applications, September
29th-October 10th, 2003.

Awards and Nominations

When presenting the results and key findings of my research, I have received the
following awards and nominations.

• Best Paper nomination Economic and Financial Systems II at the Fifth
World Multi-Conference on Systemics, Cybernetics and Informatics (SCI’2001),
Orlando, Florida, July, 2001. The main judgement criterion was the quality
of the paper.

214

• Best Paper nomination at the Fourth International Conference on Enterprise
Information Systems (ICEIS’2002), Ciudad Real, Spain, April, 2002. The
main judgement criterion was the quality of the paper.

• SAS Student Ambassador award at SAS SEUGI, Paris, June, 2002. The
main judgement criterion was the quality of the submitted abstract.

• Best Speaker award at the SAS Academic Day in La Tentation, Brussels, May
23rd, 2002. The main judgement criteria were the clarity of the presentation
and the speaker’s presentation capability.

• Best Speaker award at the SAS Belgium & Luxembourg Users (BLUES)
Conference in the Brabanthal, Haasrode, October 24th, 2002. The main
judgement criteria were the clarity of the presentation and the speaker’s
presentation capability.

Ad Hoc Reviewing

I have done ad-hoc reviewing for the following journals.

• Fuzzy Sets and Systems

• Journal of Applied Soft Computing

• Decision Support Systems

• International Journal of Intelligent Systems in Accounting, Finance & Man-
agement

• Computational Statistics and Data Analysis

I also regularly write book and article reviews for the ACM Computing Reviews
journal.

Interviews

B. Baesens, Reliable credit-risk analysis based on neural networks, Interview in
Banking & Finance, pp. 96-97, March, 2003

215

Publications1

Journal publications

1. Baesens B., Setiono R., Mues C., Vanthienen J., Using Neural Net-
work Rule Extraction and Decision Tables for Credit-Risk Evaluation, Man-
agement Science, Volume 49, Number 3, pp. 312-329, March 2003. SCI

2001 Impact Factor: 1.502

2. Baesens B., Van Gestel T., Viaene S., Stepanova M., Suykens

J.A.K., Vanthienen J., Benchmarking State of the Art Classification Al-
gorithms for Credit Scoring, Journal of the Operational Research Society,
Volume 54, Number 6, pp. 627-635. SCI 2001 Impact Factor: 0.438

3. Baesens B., Verstraeten G., Van den Poel D., Egmont-Petersen

M., Van Kenhove P., Vanthienen J., Bayesian Network Classifiers for
Identifying the Slope of the Customer Lifecycle of Long-Life Customers,
European Journal of Operational Research, forthcoming, 2003. SCI 2001

Impact Factor: 0.494

4. Van Gestel T., Baesens B., Garcia J., Van Dijcke P., A Support Vec-
tor Machine Approach to Credit Scoring, Bank en Financiewezen, Volume
2, pp. 73-82, March 2003. SCI 2001 Impact Factor: -

5. Van Gestel T., Suykens J.A.K., Baesens B., Viaene S., Vanthienen

J., Dedene G., De Moor B., Vandewalle J., Benchmarking Least
Squares Support Vector Machine Classifiers, Machine Learning, forthcom-
ing, 2003. SCI 2001 Impact Factor: 1.476

6. Hoffmann F., Baesens B., Martens J., Put F., Vanthienen J., Com-
paring a Genetic Fuzzy and a Neurofuzzy Classifier for Credit Scoring, Inter-
national Journal of Intelligent Systems, Volume 17, Issue 11, pp. 1067-1083,
2002. SCI 2001 Impact Factor: 0.398

7. Viaene S., Derrig R., Baesens B., Dedene G., A Comparison of State-
of-the-Art Classification Techniques for Expert Automobile Insurance Fraud
Detection, Journal of Risk and Insurance, Special issue on Fraud Detection,
Volume 69, Issue 3, pp. 433-443, 2002. SCI 2001 Impact Factor: 0.196

8. Baesens B., Viaene S., Van den Poel D., Vanthienen J., Dedene G.,
Using Bayesian Neural Networks for Repeat Purchase Modelling in Direct
Marketing, European Journal of Operational Research, Volume 138, Number
1, pp. 191-211, 2002. SCI 2001 Impact Factor: 0.494

9. Viaene S., Baesens B., Van den Poel D., Dedene G., Vanthienen J.,
Wrapped Input Selection using Multilayer Perceptrons for Repeat-Purchase

1Authors are always listed in order of contribution.

216

Modeling in Direct Marketing, International Journal of Intelligent Systems
in Accounting, Finance and Management, Volume 10, Number 2, pp. 115-
126, 2001. SCI 2001 Impact Factor: -

10. Viaene S., Baesens B., Van Gestel T., Suykens J.A.K., Van den

Poel D., Vanthienen J., De Moor B., Dedene G., Knowledge Discov-
ery in a Direct Marketing Case using Least Squares Support Vector Ma-
chines, International Journal of Intelligent Systems, Volume 16, Number 9,
pp. 1023-1036, 2001. SCI 2001 Impact Factor: 0.398

Dutch Journals

1. Baesens B., Mues C., Vanthienen J., Knowledge Discovery in Data:
naar performante én begrijpelijke modellen van bedrijfsintelligentie, Business
IN-zicht, Nummer 12, Maart 2003.

2. Baesens B., Mues C., Vanthienen J., Knowledge Discovery in Data:
van academische denkoefening naar bedrijfsrelevante praktijk, Informatie,
pp. 30-35, Februari, 2003.

3. Souverein M., Baesens B., Viaene S., Vanderbist D., Vanthienen

J., Een overzicht van web usage mining en de implicaties voor e-commerce,
Beleidsinformatica Tijdschrift, Volume 27, Nummer 2, 2001.

4. Baesens B., ORDBMS’en: de object-relationele verzoening, Beleidsinfor-
matica Tijdschrift, Volume 24, Nummer 3, 1998.

Contributions to Books

1. Viaene S., Baesens B., Dedene G., Vanthienen J., Van den Poel

D., Proof Running Two State-of-the-Art Pattern Recognition Techniques in
the Field of Direct Marketing, Enterprise Information Systems IV, Piattini
M., Filipe J., Braz J. (Eds), Kluwer, 2002.

2. Hoffmann F., Baesens B., Martens J., Put F., Vanthienen J., Com-
paring a Genetic Fuzzy and a Neurofuzzy Classifier for Credit Scoring, Pro-
ceedings of the Fifth International FLINS Conference on Computational In-
telligent Systems for Applied Research (FLINS’2002), Ruan D., D’hondt P.,
Kerre E.E. (Eds), ISBN 981-238-066-3, World Scientific, pp. 355-362, 2002.

3. Baesens B., Setiono R., Mues C., Viaene S., Vanthienen J., Building
Credit-Risk Evaluation Expert Systems using Neural Network Rule Extrac-
tion and Decision Tables, New Directions in Software Engineering, Liber
Amicorum M. Verhelst, Vandenbulcke J. and Snoeck M. (Eds.), 160 pp.,
Leuven University Press, 2001.

217

Conference Publications

1. Baesens B.,Van Gestel T., Stepanova M., Vanthienen J., Neural
Network Survival Analysis for Personal Loan Data, Proceedings of the Eighth
Conference on Credit Scoring and Credit Control (CSCCVII’2003), Edin-
burgh, Scotland, September, 2003.

2. Egmont-Petersen M., Baesens B., Feelders A., Using Bayesian Net-
works for Estimating the Risk of Default in Credit Scoring, Proceedings of the
International workshop on Computational Management Science, Economics,
Finance and Engineering, Limassol, Cyprus, March 2003.

3. Baesens B., Mues C., Setiono R., De Backer M., Vanthienen J.,
Building Intelligent Credit Scoring Systems using Decision Tables, Proceed-
ings of the Fifth International Conference on Enterprise Information Sys-
tems (ICEIS’2003), Angers, France, pp. 19-25, April 2003.

4. Van Gestel T., Baesens B., Suykens J.A.K., Espinoza M., Baes-

taens D.E., Vanthienen J., De Moor B., Bankruptcy Prediction with
Least Squares Support Vector Machine Classifiers, Proceedings of the IEEE
International Conference on Computational Intelligence for Financial Engi-
neering (CIFEr2003), Hong Kong, pp. 1-8, March 2003.

5. Buckinx W., Baesens B., Van den Poel D., Van Kenhove P., Van-

thienen J., Using Machine Learning Techniques to Predict Defection of Top
Clients, Proceedings of the Third International Conference on Data Mining
Methods and Databases for Engineering, Finance and Other Fields, Bologna,
Italy, pp. 509-517, September 2002.

6. Baesens B., Egmont-Petersen M., Castelo R., Vanthienen J., Learn-
ing Bayesian Network Classifiers for Credit Scoring using Markov Chain
Monte Carlo Search, Proceedings of the Sixteenth International Conference
on Pattern Recognition (ICPR’2002), IEEE Computer Society, Québec, Canada,
pp. 49-52, August 2002.

7. Verstraeten G., Baesens B.,Van den Poel D., Egmont-Petersen

M., Van Kenhove P., Vanthienen J., Targeting Long-Life Customers:
Towards a Segmented CRM Approach, Proceedings of the Thirty-First Eu-
ropean Marketing Academy Conference (EMAC’2002), Braga, Portugal, May
2002.

8. Viaene S., Baesens B., Dedene G., Vanthienen J., Van den Poel

D., Proof Running Two State-of-the-Art Pattern Recognition Techniques
in the Field of Direct Marketing, Proceedings of the Fourth International
Conference on Enterprise Information Systems (ICEIS’2002), Ciudad Real,
Spain, pp. 446-454, April 2002. Best paper nomination

218

9. Baesens B., Setiono R., Mues C., Viaene S., Vanthienen J., Building
Credit-Risk Evaluation Expert Systems using Neural Network Rule Extrac-
tion and Decision Tables, Proceedings of the Twenty Second International
Conference on Information Systems (ICIS’2001), New Orleans, Louisiana,
USA, December, 2001.

10. Baesens B., Setiono R., De Lille V., Viaene S., Vanthienen J.,
Neural Network Rule Extraction for Credit Scoring, Proceedings of The Pa-
cific Asian Conference on Intelligent Systems (PAIS’2001), Seoul, Korea,
pp. 128-132, November, 2001

11. Viaene S., Derrig R., Baesens B., Dedene G., A Comparison of State-
of-the-Art Classification Techniques for Expert Automobile Insurance Fraud
Detection, Proceedings of the Fifth International Congress on Insurance:
Mathematics and Economics (IME’2001), Pennsylvania, USA, July, 2001.

12. Viaene S., Baesens B., Van den Poel D., Vanthienen J., Dedene G.,
The Bayesian Evidence Framework for Database Marketing Modeling using
both RFM and Non-RFM Predictors, Proceedings of the Fifth World Multi-
Conference on Systemics, Cybernetics and Informatics (SCI’2001), Orlando,
Florida, USA, pp.136-140, July, 2001. Best paper nomination

13. Baesens B., Viaene S., Vanthienen J., A Comparative Study of State
of the Art Classification Algorithms for Credit Scoring, Proceedings of the
Seventh Conference on Credit Scoring and Credit Control (CSCCVII’2001),
Edinburgh, Scotland, September, 2001.

14. Baesens B., Viaene S., Van Gestel T., Suykens J.A.K., Dedene

G., De Moor B., Vanthienen J., An Initial Approach to Wrapped In-
put Selection using Least Squares Support Vector Machine Classifiers: Some
Empirical Results, Proceedings of the Twelfth Belgium-Netherlands Confer-
ence on Artificial Intelligence (BNAIC’00), Kaatsheuvel, The Netherlands,
pp. 69-76, November, 2000.

15. Baesens B., Viaene S., Vanthienen J., Dedene G., Wrapped Feature
Selection by means of Guided Neural Network Optimisation, Proceedings of
the Fifteenth International Conference on Pattern Recognition (ICPR’2000),
IEEE Computer Society, Barcelona, Spain, pp. 113-116, September, 2000.

16. Viaene S., Baesens B., Van Gestel T., Suykens J.A.K., Van den

Poel D., Vanthienen J., De Moor B., Dedene G., Knowledge Dis-
covery using Least Squares Support Vector Machine Classifiers: a Direct
Marketing Case, Proceedings of the Fourth European Conference on Princi-
ples and Practice of Knowledge Discovery in Databases (PKDD’2000), D.A.
Zighed, J. Komorowski and J. Zytkow (Eds.), Lecture Notes in Artificial In-
telligence 1910, Springer, Lyon, France, pp. 657-664, September, 2000. SCI
2000 Impact Factor: 0.253

219

17. Baesens B., Viaene S., Van Gestel T., Suykens J.A.K., Dedene

G., De Moor B., Vanthienen J., An Empirical assessment of Kernel
Type Performance for Least Squares Support Vector Machine Classifiers,
Proceedings of the Fourth International Conference on Knowledge-Based In-
telligent Engineering Systems & Allied Technologies (KES’2000), University
of Brighton, UK, pp. 313-316, September, 2000.

18. Viaene S., Baesens B., Van den Poel D., Dedene G., Vanthienen

J., Wrapped Feature Selection for Binary Classification Bayesian Regulari-
sation Neural Networks: a Database Marketing Application, Proceedings of
the Second International Conference on DATA MINING 2000, Cambridge
University, UK, pp. 353-362, July, 2000.

19. Baesens B., Viaene S., Vanthienen J., Post-Processing of Association
Rules, Proceedings of the special workshop on post-processing, The Sixth
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’2000), Boston, MA, USA, pp. 2-8, August, 2000.

20. Baesens B., Viaene S., Vanthienen J., Post-Processing of Association
Rules, Proceedings of the VIII Seminar on Knowledge Acquisition in Databases,
Turawa, Poland, pp.159-173, May, 2000.

21. Viaene S., Baesens B., Dedene G., Vanthienen J., Vandenbulcke

J., Sensitivity Based Pruning of Input Variables by means of Weight Cas-
caded Retraining, Proceedings of the Fourth International Conference and
Exhibition on the Practical Application of Knowledge Discovery and Data
Mining (PADD’2000), Manchester, UK, pp.141-159, April, 2000.

Book and Article Reviews

1. Baesens B., 90 days to the data mart, Simon Alan, John Wiley & Sons,
Inc., New York, NY, 1998, 338 pp., ISBN 0-471-25194-1, Computing Reviews,
Volume 39, Number 10, October 1998, pp. 510-511, ACM Press.

2. Baesens B., Interactive data warehousing, Singh Harry, Prentice Hall PTR,
Upper Saddle River, NJ, 1998, 481 pp., ISBN 0-13-080371-5, Computing
Reviews, Volume 40, Number 8, August 1999, pp. 385-386, ACM Press.

3. Baesens B., Exploring data mining implementation, Hirji K., Communica-
tions of the ACM, 44(7): 87-93, 2001, Computing Reviews, September 2001,
ACM Press.

4. Baesens B., A fast algorithm for mining sequential patterns from large
databases, Lu L., Longxiang Z., An C., Ning C., Journal of Computer Science
and Technology, Volume 16, Number 4, pp. 359-370, Computing Reviews,
April 2002, ACM Press.

220

5. Baesens B., Efficient Construction of Regression Trees with Range and
Region Splitting, Morimoto Y., Ishii H., Morishita S., Machine Learning,
Volume 45, pp. 235-259, Computing Reviews, November 2002, ACM Press.

Research reports

1. Baesens B., Verstraeten G.,Van den Poel D., Egmont-Petersen

M., Van Kenhove P., Vanthienen J., Bayesian Network Classifiers for
Identifying the Slope of the Customer-Lifecycle of Long-Life Customers,
Working Paper 02/154, Department of Marketing, Ghent University (Ghent,
Belgium), 2002.

2. Van Gestel T., Baesens B., Suykens J.A.K., Baestaens D., Willekens

M., Vanthienen J., De Moor B., Bayesian Kernel Based Classifica-
tion for Financial Distress Detection, Internal Report 02-127, ESAT-SISTA,
K.U.Leuven (Leuven, Belgium), 2002

3. Van Gestel T., Baesens B., Suykens J.A.K., Baestaens D.E., Van-

thienen J., De Moor B., Bankruptcy Prediction with Least Squares
Support Vector Machine Classifiers, Internal Report 02-112, ESAT-SISTA,
K.U.Leuven (Leuven, Belgium), 2002.

4. Baesens B., Egmont-Petersen M., Castelo R., Vanthienen J., Learn-
ing Bayesian network classifiers for credit scoring using Markov Chain Monte
Carlo search, Technical report UU-CS-2001-58, Institute of Computer and
Information Sciences, Utrecht University (Utrecht, The Netherlands), 2001.

5. Viaene S., Baesens B., Van den Poel D., Vanthienen J., Dedene

G., Bayesian Neural Network Learning for Repeat Purchase Modelling in
Direct Marketing, Working Paper 01/105, Department of Marketing, Ghent
University (Ghent, Belgium), 2001.

6. Viaene S., Baesens B., Van Gestel T., Suykens J.A.K., Van den

Poel D., Vanthienen J., De Moor B., Dedene G., Knowledge Discov-
ery in a Direct Marketing Case using Least Squares Support Vector Ma-
chines, Working Paper 01/104, Department of Marketing, Ghent University
(Ghent, Belgium), 2001.

7. Viaene S., Baesens B., Van den Poel D., Dedene G., Vanthienen J.,
Wrapped Input Selection using Multilayer Perceptrons for Repeat-Purchase
Modeling in Direct Marketing, Working Paper 01/102, Department of Mar-
keting, Ghent University (Ghent, Belgium), 2001.

8. Baesens B., Viaene S., Van Gestel T., Suykens J.A.K., Dedene G.,
De Moor B., Vanthienen J., An Empirical assessment of Kernel Type
Performance for Least Squares Support Vector Machine Classifiers, Internal
Report 00-52, ESAT-SISTA, K.U.Leuven (Leuven, Belgium), 2000.

221

9. Van Gestel T., Suykens J.A.K., Baesens B., Viaene S., Vanthienen

J., Dedene G., De Moor B., Vandewalle J., Benchmarking Least
Squares Support Vector Machine Classifiers, Internal Report 00-37, ESAT-
SISTA, K.U.Leuven (Leuven, Belgium), 2000.

10. Viaene S., Baesens B., Van Gestel T., Suykens J.A.K., Van den

Poel D., Vanthienen J., De Moor B., Dedene G., Knowledge Dis-
covery using Least Squares Support Vector Machine Classifiers: a Direct
Marketing Case, Internal Report 00-33, ESAT-SISTA, K.U.Leuven (Leuven,
Belgium), 2000.

11. Viaene S., Baesens B., Van Gestel T., Suykens J.A.K., Dedene

G., De Moor B., Vanthienen J., Least Squares Support Vector Machine
Classifiers : An Empirical Evaluation, Internal Report 00-03, ESAT-SISTA,
K.U.Leuven (Leuven, Belgium), 2000.

12. Viaene S., Baesens B., Van den Poel D., Vanthienen J., Dedene

G., Bayesian Neural Network Learning for Repeat Purchase Modelling in
Direct Marketing, Technical report nr 0114, ETEW, K.U.Leuven (Leuven,
Belgium), 2000.

13. Viaene S., Baesens B., Van den Poel D., Dedene G., Vanthienen

J., Wrapped Feature Selection for Neural Networks in Direct Marketing,
Technical report nr 0019, ETEW, K.U.Leuven (Leuven, Belgium), 2000.

14. Baesens B., Viaene S., Vanthienen J., Post-Processing of Association
Rules, Technical report nr 0020, ETEW, K.U.Leuven (Leuven, Belgium),
2000.

15. Baesens B., Viaene S., Van Gestel T., Suykens J.A.K., Dedene

G., De Moor B., Vanthienen J., Least Squares Support Vector Ma-
chine Classifiers: An Empirical Evaluation, Technical report nr 0003, ETEW,
K.U.Leuven (Leuven, Belgium), 2000.

16. Viaene S., Baesens B., Dedene G., Vanthienen J., Vandenbulcke

J., Sensitivity Based Pruning of Input Variables by means of Weight Cas-
caded Retraining, Technical report nr 9954, ETEW, K.U.Leuven (Leuven,
Belgium), 1999.

222

Doctoral dissertations from the Faculty of
Economic and Applied Economic Sciences

(from August 1, 1971)

1. GEPTS, Stefaan
Stability and efficiency of resource allocation processes in discrete commodity
spaces.
Leuven, KUL, 1971. 86 pp.

2. PEETERS, Theo
Determinanten van de internationale handel in fabrikaten.
Leuven, Acco, 1971. 290 pp.

3. VAN LOOY, Wim
Personeelsopleiding: een onderzoek naar investeringsaspekten van opleiding.
Hasselt, Vereniging voor wetenschappelijk onderzoek in Limburg, 1971. VII, 238
pp.

4. THARAKAN, Mathew
Indian exports to the European community: problems and prospects.
Leuven, Faculty of economics and applied economics, 1972. X,343 pp.

5. HERROELEN, Willy
Heuristische programmatie: methodologische benadering en praktische toepassing
op complexe combinatorische problemen.
Leuven, Aurelia scientifica, 1972. X, 367 pp.

6. VANDENBULCKE, Jacques
De studie en de evaluatie van data-organisatiemethodes en data-zoekmethodes.
Leuven, s.n., 1973. 3 V.

7. PENNYCUICK, Roy A.
The economics of the ecological syndrome.
Leuven, Acco, 1973. XII, 177 pp.

8. KAWATA, T. Bualum
Formation du capital d’origine belge, dette publique et stratégie du développement
au Zaire.
Leuven, KUL, 1973. V, 342 pp.

9. DONCKELS, Rik
Doelmatige oriëntering van de sectorale subsidiepolitiek in België een theoretisch
onderzoek met empirische toetsing.

223

Leuven, K.U.Leuven, 1974. VII, 156 pp.

10. VERHELST, Maurice
Contribution to the analysis of organizational information systems and their fi-
nancial benefits.
Leuven, K.U.Leuven, 1974. 2 V.

11. CLEMEUR, Hugo
Enkele verzekeringstechnische vraagstukken in het licht van de nutstheorie.
Leuven, Aurelia scientifica, 1974. 193 pp.

12. HEYVAERT, Edward
De ontwikkeling van de moderne bank- en krediettechniek tijdens de zestiende en
zeventiende eeuw in Europa en te Amsterdam in het bijzonder.
Leuven, K.U.Leuven, 1975. 186 pp.

13. VERTONGHEN, Robert
Investeringscriteria voor publieke investeringen: het uitwerken van een opera-
tionele theorie met een toepassing op de verkeersinfrastructuur.
Leuven, Acco, 1975. 254 pp.

14. Niet toegekend.

15. VANOVERBEKE, Lieven
Microeconomisch onderzoek van de sectoriële arbeidsmobiliteit.
Leuven, Acco, 1975. 205 pp.

16. DAEMS, Herman
The holding company: essays on financial intermediation, concentration and cap-
ital market imperfections in the Belgian economy.
Leuven, K.U.Leuven, 1975. XII, 268 pp.

17. VAN ROMPUY, Eric
Groot-Brittannië en de Europese monetaire integratie: een onderzoek naar de
gevolgen van de Britse toetreding op de geplande Europese monetaire unie.
Leuven, Acco, 1975. XIII, 222 pp.

18. MOESEN, Wim
Het beheer van de staatsschuld en de termijnstructuur van de intrestvoeten met
een toepassing voor België.
Leuven, Vander, 1975. XVI, 250 pp.

19. LAMBRECHT, Marc
Capacity constrained multi-facility dynamic lot-size problem.
Leuven, KUL, 1976. 165 pp.

224

20. RAYMAECKERS, Erik
De mens in de onderneming en de theorie van het producenten-gedrag: een bij-
drage tot transdisciplinaire analyse.
Leuven, Acco, 1976. XIII, 538 pp.

21. TEJANO, Albert
Econometric and input-output models in development planning: the case of the
Philippines.
Leuven, KUL, 1976. XX, 297 pp.

22. MARTENS, Bernard
Prijsbeleid en inflatie met een toepassing op België.
Leuven, KUL, 1977. IV, 253 pp.

23. VERHEIRSTRAETEN, Albert
Geld, krediet en intrest in de Belgische financiële sector.
Leuven, Acco, 1977. XXII, 377 pp.

24. GHEYSSENS, Lieven
International diversification through the government bond market: a risk-return
analysis.
Leuven, s.n., 1977. 188 pp.

25. LEFEBVRE, Chris
Boekhoudkundige verwerking en financiële verslaggeving van huurkooptransacties
en verkopen op afbetaling bij ondernemingen die aan consumenten verkopen.
Leuven, KUL, 1977. 228 pp.

26. KESENNE, Stefan
Tijdsallocatie en vrijetijdsbesteding: een econometrisch onderzoek.
Leuven, s.n., 1978. 163 pp.

27. VAN HERCK, Gustaaf
Aspecten van optimaal bedrijfsbeleid volgens het marktwaardecriterium: een risico-
rendementsanalyse.
Leuven, KUL, 1978. IV, 163 pp.

28. VAN POECK, Andre
World price trends and price and wage development in Belgium: an investigation
into the relevance of the Scandinavian model of inflation for Belgium.
Leuven, s.n., 1979. XIV, 260 pp.

29. VOS, Herman
De industriële technologieverwerving in Brazilië: een analyse.

225

Leuven, s.n., 1978. onregelmatig gepagineerd.

30. DOMBRECHT, Michel
Financial markets, employment and prices in open economies.
Leuven, KUL, 1979. 182 pp.

31. DE PRIL, Nelson
Bijdrage tot de actuariële studie van het bonus-malussysteem.
Brussel, OAB, 1979. 112 pp.

32. CARRIN, Guy
Economic aspects of social security: a public economics approach.
Leuven, KUL, 1979. onregelmatig gepagineerd

33. REGIDOR, Baldomero
An empirical investigation of the distribution of stock-market prices and weak-
form efficiency of the Brussels stock exchange.
Leuven, KUL, 1979. 214 pp.

34. DE GROOT, Roger
Ongelijkheden voor stop loss premies gebaseerd op E.T. systemen in het kader van
de veralgemeende convexe analyse.
Leuven, KUL, 1979. 155 pp.

35. CEYSSENS, Martin
On the peak load problem in the presence of rationizing by waiting.
Leuven, KUL, 1979. IX, 217 pp.

36. ABDUL RAZK ABDUL
Mixed enterprise in Malaysia: the case study of joint venture between Malysian
public corporations and foreign enterprises.
Leuven, KUL, 1979. 324 pp.

37. DE BRUYNE, Guido
Coordination of economic policy: a game-theoretic approach.
Leuven, KUL, 1980. 106 pp.

38. KELLES, Gerard
Demand, supply, price change and trading volume on financial markets of the
matching-order type. Vraag, aanbod, koersontwikkeling en omzet op financiële
markten van het Europese type.
Leuven, KUL, 1980. 222 pp.

39. VAN EECKHOUDT, Marc
De invloed van de looptijd, de coupon en de verwachte inflatie op het opbrengstver-

226

loop van vastrentende finaciële activa.
Leuven, KUL, 1980. 294 pp.

40. SERCU, Piet
Mean-variance asset pricing with deviations from purchasing power parity.
Leuven, s.n., 1981. XIV, 273 pp.

41. DEQUAE, Marie-Gemma
Inflatie, belastingsysteem en waarde van de onderneming.
Leuven, KUL, 1981. 436 pp.

42. BRENNAN, John
An empirical investigation of Belgian price regulation by prior notification: 1975
- 1979 - 1982.
Leuven, KUL, 1982. XIII, 386 pp.

43. COLLA, Annie
Een econometrische analyse van ziekenhuiszorgen.
Leuven, KUL, 1982. 319 pp.

44. Niet toegekend.

45. SCHOKKAERT, Eric
Modelling consumer preference formation.
Leuven, KUL, 1982. VIII, 287 pp.

46. DEGADT, Jan
Specificatie van een econometrisch model voor vervuilingsproblemen met proeven
van toepassing op de waterverontreiniging in België.
Leuven, s.n., 1982. 2 V.

47. LANJONG, Mohammad Nasir
A study of market efficiency and risk-return relationships in the Malaysian capital
market.
s.l., s.n., 1983. XVI, 287 pp.

48. PROOST, Stef
De allocatie van lokale publieke goederen in een economie met een centrale over-
heid en lokale overheden.
Leuven, s.n., 1983. onregelmatig gepagineerd.

49. VAN HULLE, Cynthia (/08/83)
Shareholders’ unanimity and optimal corporate decision making in imperfect cap-
ital markets.
s.l., s.n., 1983. 147 pp. + appendix.

227

50. VAN WOUWE, Martine (2/12/83)
Ordening van risico’s met toepassing op de berekening van ultieme rüınekansen.
Leuven, s.n., 1983. 109 pp.

51. D’ALCANTARA, Gonzague (15/12/83)
SERENA: a macroeconomic sectoral regional and national account econometric
model for the Belgian economy.
Leuven, KUL, 1983. 595 pp.

52. D’HAVE, Piet (24/02/84)
De vraag naar geld in België.
Leuven, KUL, 1984. XI, 318 pp.

53. MAES, Ivo (16/03/84)
The contribution of J.R. Hicks to macro-economic and monetary theory.
Leuven, KUL, 1984. V, 224 pp.

54. SUBIANTO, Bambang (13/09/84)
A study of the effects of specific taxes and subsidies on a firms’ R&D investment
plan.
s.l., s.n., 1984. V, 284 pp.

55. SLEUWAEGEN, Leo (26/10/84)
Location and investment decisions by multinational enterprises in Belgium and
Europe.
Leuven, KUL, 1984. XII, 247 pp.

56. GEYSKENS, Erik (27/03/85)
Produktietheorie en dualiteit.
Leuven, s.n., 1985. VII, 392 pp.

57. COLE, Frank (26/06/85)
Some algorithms for geometric programming.
Leuven, KUL, 1985. 166 pp.

58. STANDAERT, Stan (26/09/86)
A study in the economics of repressed consumption.
Leuven, KUL, 1986. X, 380 pp.

59. DELBEKE, Jos (03/11/86)
Trendperioden in de geldhoeveelheid van België 1877-1983: een theoretische en
empirische analyse van de ”Banking school” hypothese.
Leuven, KUL, 1986. XII, 430 pp.

228

60. VANTHIENEN, Jan (08/12/86)
Automatiseringsaspecten van de specificatie, constructie en manipulatie van besliss-
ingstabellen.
Leuven, s.n., 1986. XIV, 378 pp.

61. LUYTEN, Robert (30/04/87)
A systems-based approach for multi-echelon production/inventory systems.
s.l., s.n., 1987. 3V.

62. MERCKEN, Roger (27/04/87)
De invloed van de data base benadering op de interne controle.
Leuven, s.n., 1987. XIII, 346 pp.

63. VAN CAYSEELE, Patrick (20/05/87)
Regulation and international innovative activities in the pharmaceutical industry.
s.l., s.n., 1987. XI, 169 pp.

64. FRANCOIS, Pierre (21/09/87)
De empirische relevantie van de independence from irrelevant alternatives. As-
sumptie indiscrete keuzemodellen.
Leuven, s.n., 1987. IX, 379 pp.

65. DECOSTER, André (23/09/88)
Family size, welfare and public policy.
Leuven, KUL. Faculteit Economische en toegepaste economische wetenschappen,
1988. XIII, 444 pp.

66. HEIJNEN, Bart (09/09/88)
Risicowijziging onder invloed van vrijstellingen en herverzekeringen: een theoretis-
che analyse van optimaliteit en premiebepaling.
Leuven, KUL. Faculteit Economische en toegepaste economische wetenschappen,
1988. onregelmatig gepagineerd.

67. GEEROMS, Hans (14/10/88)
Belastingvermijding. Theoretische analyse van de determinanten van de belastin-
gontduiking en de belastingontwijking met empirische verificaties.
Leuven, s.n., 1988. XIII, 409, 5 pp.

68. PUT, Ferdi (19/12/88)
Introducing dynamic and temporal aspects in a conceptual (database) schema.
Leuven, KUL. Faculteit Economische en toegepaste economische wetenschappen,
1988. XVIII, 415 pp.

69. VAN ROMPUY, Guido (13/01/89)
A supply-side approach to tax reform programs. Theory and empirical evidence

229

for Belgium.
Leuven, KUL. Faculteit Economische en toegepaste economische wetenschappen,
1989. XVI, 189, 6 pp.

70. PEETERS, Ludo (19/06/89)
Een ruimtelijk evenwichtsmodel van de graanmarkten in de E.G.: empirische spec-
ificatie en beleidstoepassingen.
Leuven, K.U.Leuven. Faculteit Economische en toegepaste economische weten-
schappen, 1989. XVI, 412 pp.

71. PACOLET, Jozef (10/11/89)
Marktstructuur en operationele efficiëntie in de Belgische financiële sector.
Leuven, K.U.Leuven. Faculteit Economische en toegepaste economische weten-
schappen, 1989. XXII, 547 pp.

72. VANDEBROEK, Martina (13/12/89)
Optimalisatie van verzekeringscontracten en premieberekeningsprincipes.
Leuven, K.U.Leuven. Faculteit Economische en toegepaste economische weten-
schappen, 1989. 95 pp.

73. WILLEKENS, Francois ()
Determinance of government growth in industrialized countries with applications
to Belgium.
Leuven, K.U.Leuven. Faculteit Economische en toegepaste economische weten-
schappen, 1990. VI, 332 pp.

74. VEUGELERS, Reinhilde (02/04/90)
Scope decisions of multinational enterprises.
Leuven, K.U.Leuven. Faculteit Economische en toegepaste economische weten-
schappen, 1990. V, 221 pp.

75. KESTELOOT, Katrien (18/06/90)
Essays on performance diagnosis and tacit cooperation in international oligopolies.
Leuven, K.U.Leuven. Faculteit Economische en toegepaste economische weten-
schappen, 1990. 227 pp.

76. WU, Changqi (23/10/90)
Strategic aspects of oligopolistic vertical integration.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1990. VIII, 222 pp.

77. ZHANG, Zhaoyong (08/07/91)
A disequilibrium model of China’s foreign trade behaviour.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1991. XII, 256 pp.

230

78. DHAENE, Jan (25/11/91)
Verdelingsfuncties, benaderingen en foutengrenzen van stochastische grootheden
geassocieerd aan verzekeringspolissen en -portefeuilles.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1991. 146 pp.

79. BAUWELINCKX, Thierry (07/01/92)
Hierarchical credibility techniques.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1992. 130 pp.

80. DEMEULEMEESTER, Erik (23/3/92)
Optimal algorithms for various classes of multiple resource-constrained project
scheduling problems.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1992. 180 pp.

81. STEENACKERS, Anna (1/10/92)
Risk analysis with the classical actuarial risk model: theoretical extensions and
applications to Reinsurance.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1992. 139 pp.

82. COCKX, Bart (24/09/92)
The minimum income guarantee. Some views from a dynamic perspective.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1992. XVII, 401 pp.

83. MEYERMANS, Eric (06/11/92)
Econometric allocation systems for the foreign exchange market: Specification,
estimation and testing of transmission mechanisms under currency substitution.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1992. XVIII, 343 pp.

84. CHEN, Guoqing (04/12/92)
Design of fuzzy relational databases based on fuzzy functional dependency.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1992. 176 pp.

85. CLAEYS, Christel (18/02/93)
Vertical and horizontal category structures in consumer decision making: The na-
ture of product hierarchies and the effect of brand typicality.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1993. 348 pp.

231

86. CHEN, Shaoxiang (25/03/93)
The optimal monitoring policies for some stochastic and dynamic production pro-
cesses.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1993. 170 pp.

87. OVERWEG, Dirk (23/04/93)
Approximate parametric analysis and study of cost capacity management of com-
puter configurations.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1993. 270 pp.

88. DEWACHTER, Hans (22/06/93)
Nonlinearities in speculative prices: The existence and persistence of nonlinearity
in foreign exchange rates.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1993. 151 pp.

89. LIN, Liangqi (05/07/93)
Economic determinants of voluntary accounting choices for R & D expenditures
in Belgium.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1993. 192 pp.

90. DHAENE, Geert (09/07/93)
Encompassing: formulation, properties and testing.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1993. 117 pp.

91. LAGAE, Wim (20/09/93)
Marktconforme verlichting van soevereine buitenlandse schuld door private credi-
teuren: een neo-institutionele analyse.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1993. 241 pp.

92. VAN DE GAER, Dirk (27/09/93)
Equality of opportunity and investment in human capital.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1993. 172 pp.

93. SCHROYEN, Alfred (28/02/94)
Essays on redistributive taxation when monitoring is costly.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1994. 203 pp. + V.

232

94. STEURS, Geert (15/07/94)
Spillovers and cooperation in research and development.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1994. 266 pp.

95. BARAS, Johan (15/09/94)
The small sample distribution of the Wald, Lagrange multiplier and likelihood
ratio tests for homogeneity and symmetry in demand analysis: a Monte Carlo
study.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1994. 169 pp.

96. GAEREMYNCK, Ann (08/09/94)
The use of depreciation in accounting as a signalling device.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1994. 232 pp.

97. BETTENDORF, Leon (22/09/94)
A dynamic applied general equilibrium model for a small open economy.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1994. 149 pp.

98. TEUNEN, Marleen (10/11/94)
Evaluation of interest randomness in actuarial quantities.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1994. 214 pp.

99. VAN OOTEGEM, Luc (17/01/95)
An economic theory of private donations.
Leuven. K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1995. 236 pp.

100. DE SCHEPPER, Ann (20/03/95)
Stochastic interest rates and the probabilistic behaviour of actuarial functions.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1995. 211 pp.

101. LAUWERS, Luc (13/06/95)
Social choice with infinite populations.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1995. 79 pp.

102. WU, Guang (27/06/95)
A systematic approach to object-oriented business modeling.

233

Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1995. 248 pp.

103. WU, Xueping (21/08/95)
Term structures in the Belgian market: model estimation and pricing error anal-
ysis.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1995. 133 pp.

104. PEPERMANS, Guido (30/08/95)
Four essays on retirement from the labor force.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1995. 128 pp.

105. ALGOED, Koen (11/09/95)
Essays on insurance: a view from a dynamic perspective.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1995. 136 pp.

106. DEGRYSE, Hans (10/10/95)
Essays on financial intermediation, product differentiation, and market structure.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1995. 218 pp.

107. MEIR, Jos (05/12/95)
Het strategisch groepsconcept toegepast op de Belgische financiële sector.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1995. 257 pp.

108. WIJAYA, Miryam Lilian (08/01/96)
Voluntary reciprocity as an informal social insurance mechanism: a game theoretic
approach.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1996. 124 pp.

109. VANDAELE, Nico (12/02/96)
The impact of lot sizing on queueing delays: multi product, multi machine mod-
els.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1996. 243 pp.

110. GIELENS, Geert (27/02/96)
Some essays on discrete time target zones and their tails.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1996. 131 pp.

234

111. GUILLAUME, Dominique (20/03/96)
Chaos, randomness and order in the foreign exchange markets. Essays on the
modelling of the markets.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1996. 171 pp.

112. DEWIT, Gerda (03/06/96)
Essays on export insurance subsidization.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1996. 186 pp.

113. VAN DEN ACKER, Carine (08/07/96)
Belief-function theory and its application to the modeling of uncertainty in finan-
cial statement auditing.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1996. 147 pp.

114. IMAM, Mahmood Osman (31/07/96)
Choice of IPO Flotation Methods in Belgium in an Asymmetric Information
Framework and Pricing of IPO’s in the Long-Run.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1996. 221 pp.

115. NICAISE, Ides (06/09/96)
Poverty and Human Capital.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1996. 209 pp.

116. EYCKMANS, Johan (18/09/97)
On the Incentives of Nations to Join International Environmental Agreements.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1997. XV + 348 pp.

117. CRISOLOGO-MENDOZA, Lorelei (16/10/97)
Essays on Decision Making in Rural Households: a study of three villages in the
Cordillera Region of the Philippines.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1997. 256 pp.

118. DE REYCK, Bert (26/01/98)
Scheduling Projects with Generalized Precedence Relations: Exact and Heuristic
Procedures.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1998. XXIV + 337 pp.

235

119. VANDEMAELE Sigrid (30/04/98)
Determinants of Issue Procedure Choice within the Context of the French IPO
Market: Analysis within an Asymmetric Information Framework.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1998. 241 pp.

120. VERGAUWEN Filip (30/04/98)
Firm Efficiency and Compensation Schemes for the Management of Innovative
Activities and Knowledge Transfers.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1998. VIII + 175 pp.

121. LEEMANS Herlinde (29/05/98)
The Two-Class Two-Server Queueing Model with Nonpreemptive Heterogeneous
Priority Structures.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1998. 211 pp.

122. GEYSKENS Inge (4/09/98)
Trust, Satisfaction, and Equity in Marketing Channel Relationships.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1998. 202 pp.

123. SWEENEY John (19/10/98)
Why Hold a Job ? The Labour Market Choice of the Low-Skilled.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1998. 278 pp.

124. GOEDHUYS Micheline (17/03/99)
Industrial Organisation in Developing Countries, Evidence from Cte d’Ivoire.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1999. 251 pp.

125. POELS Geert (16/04/99)
On the Formal Aspects of the Measurement of Object-Oriented Software Specifi-
cations.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1999. 507 pp.

126. MAYERES Inge (25/05/99)
The Control of Transport Externalities: A General Equilibrium Analysis.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1999. XIV + 294 pp.

236

127. LEMAHIEU Wilfried (5/07/99)
Improved Navigation and Maintenance through an Object-Oriented Approach to
Hypermedia Modelling.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1999. 284 pp.

128. VAN PUYENBROECK Tom (8/07/99)
Informational Aspects of Fiscal Federalism.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1999. 192 pp.

129. VAN DEN POEL Dirk (5/08/99)
Response Modeling for Database Marketing Using Binary Classification.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1999. 342 pp.

130. GIELENS Katrijn (27/08/99)
International Entry Decisions in the Retailing Industry: Antecedents and Perfor-
mance Consequences.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1999. 336 pp.

131. PEETERS Anneleen (16/12/99)
Labour Turnover Costs, Employment and Temporary Work.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1999. 207 pp.

132. VANHOENACKER Jurgen (17/12/99)
Formalizing a Knowledge Management Architecture Meta-Model for Integrated
Business Process Management.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 1999. 252 pp.

133. NUNES Paulo (20/03/2000)
Contingent Valuation of the Benefits of Natural Areas and its Warmglow Compo-
nent.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2000. XXI + 282 pp.

134. VAN DEN CRUYCE Bart (7/04/2000)
Statistische discriminatie van allochtonen op jobmarkten met rigide lonen.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2000. XXIII + 441 pp.

135. REPKINE Alexandre (15/03/2000)

237

Industrial restructuring in countries of Central and Eastern Europe: Combining
branch-, firm- and product-level data for a better understanding of Enterprises’
behaviour during transition towards market economy.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2000. VI + 147 pp.

136. AKSOY, Yunus (21/06/2000)
Essays on international price rigidities and exchange rates.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2000. IX + 236 pp.

137. RIYANTO, Yohanes Eko (22/06/2000)
Essays on the internal and external delegation of authority in firms.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2000. VIII + 280 pp.

138. HUYGHEBAERT, Nancy (20/12/2000)
The Capital Structure of Business Start-ups.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2000. VIII + 332 pp.

139. FRANCKX Laurent (22/01/2001)
Ambient Inspections and Commitment in Environmental Enforcement.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2001 VIII + 286 pp.

140. VANDILLE Guy (16/02/2001)
Essays on the Impact of Income Redistribution on Trade.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2001 VIII + 176 pp.

141. MARQUERING Wessel (27/04/2001)
Modeling and Forecasting Stock Market Returns and Volatility.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2001 V + 267 pp.

142. FAGGIO Giulia (07/05/2001)
Labor Market Adjustment and Enterprise Behavior in Transition.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2001 150 pp.

143. GOOS Peter (30/05/2001)
The Optimal Design of Blocked and Split-plot experiments.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2001 X + 224 pp.

238

144. LABRO Eva (01/06/2001)
Total Cost of Ownership Supplier Selection based on Activity Based Costing and
Mathematical Programming.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2001 217 pp.

145. VANHOUCKE Mario (07/06/2001)
Exact Algorithms for various Types of Project Scheduling Problems. Nonregular
Objectives and time/cost Trade-offs. 316
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2001 316 pp.

146. BILSEN Valentijn (28/08/2001)
Entrepreneurship and Private Sector Development in Central European Transition
Countries.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2001 XVI + 188 pp.

147. NIJS Vincent (10/08/2001)
Essays on the dynamic Category-level Impact of Price promotions.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2001.

148. CHERCHYE Laurens (24/09/2001)
Topics in Non-parametric Production and Efficiency Analysis.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2001 VII + 169 pp.

149. VAN DENDER Kurt (15/10/2001)
Aspects of Congestion Pricing for Urban Transport.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2001 VII + 203 pp.

150. CAPEAU Bart (26/10/2001)
In defence of the excess demand approach to poor peasants’ economic behaviour.
Theory and Empirics of non-recursive agricultural household modelling.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2001, XIII + 286 blz.

151. CALTHROP Edward (09/11/2001)
Essays in urban transport economics.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2001.

239

152. VANDER BAUWHEDE Heidi (03/12/2001)
Earnings management in an Non-Anglo-Saxon environment.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2001, 408 pp.

153. DE BACKER Koenraad (22/01/2002)
Multinational firms and industry dynamics in host countries : the case of Bel-
gium.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2002, VII + 165 pp.

154. BOUWEN Jan (08/02/2002)
Transactive memory in operational workgroups. Concept elaboration and case
study.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2002, 319 pp. + appendix 102 pp.

155. VAN DEN BRANDE Inge (13/03/2002)
The psychological contract between employer and employee : a survey among
Flemish employees.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2002, VIII + 470 pp.

156. VEESTRAETEN Dirk (19/04/2002)
Asset Price Dynamics under Announced Policy Switching.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2002, 176 pp.

157. PEETERS Marc (16/05/2002)
One Dimensional Cutting and Packing : New Problems and Algorithms.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2002

158. SKUDELNY Frauke (21/05/2002)
Essays on The Economic Consequences of the European Monetary Union.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2002

159. DE WEERDT Joachim (07/06/2002)
Social Networks, Transfers and Insurance in Developing countries.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2002, VI + 129 pp.

160. TACK Lieven (25/06/2002)
Optimal Run Orders in Design of Experiments.

240

Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2002, XXXI + 344 pp.

161. POELMANS Stephan (10/07/2002)
Making Workflow Systems work. An investigation into the Importance of Task-
appropriation fit, End-user Support and other Technological Characteristics. Leu-
ven, K.U.Leuven, Faculteit Economische en toegepaste economische wetenschap-
pen, 2002, 237 pp.

162. JANS Raf (26/09/2002)
Capacitated Lot Sizing Problems : New Applications, Formulations and Algo-
rithms.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2002.

163. VIAENE Stijn (25/10/2002)
Learning to Detect Fraud from enriched Insurance Claims Data (Context, Theory
and Applications).
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2002, 315 pp.

164. AYALEW Tekabe (08/11/2002)
Inequality and Capital Investment in a Subsistence Economy.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2002. V + 148 pp.

165. MUES Christophe (12/11/2002)
On the Use of Decision Tables and Diagrams in Knowledge Modeling and Verifi-
cation.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2002. 222 pp.

166. BROCK Ellen (13/03/2003)
The Impact of International Trade on European Labour Markets.
K.U.Leuven, Faculteit Economische en toegepaste economische wetenschappen,
2002.

167. VERMEULEN Frederic (29/11/2002)
Essays on the collective Approach to Household Labour Supply.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2002. XIV + 203 pp.

168. CLUDTS Stephan (11/12/2002)
Combining participation in decision-making with financial participation : theoret-
ical and empirical perspectives.

241

Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2002. XIV + 247 pp.

169. WARZYNSKI Frederic (09/01/2003)
The dynamic effect of competition on price cost margins and innovation.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2003.

170. VERWIMP Philip (14/01/2003)
Development and genocide in Rwanda ; a political economy analysis of peasants
and power under the Habyarimana regime.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2003.

171. BIGANO Andrea (25/02/2003)
Environmental regulation of the electricity sector in a European Market Frame-
work.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2003, XX + 310 pp.

172. MAES Konstantijn (24/03/2003)
Modeling the Term Structure of Interest Rates Across Countries.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2003, V+246 pp.

173. VINAIMONT Tom (26/02/2003)
The performance of One- versus Two-Factor Models of the Term Structure of In-
terest Rates.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2003.

174. OOGHE Erwin (15/04/2003)
Essays in multi-dimensional social choice.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2003, VIII+108 pp.

175. FORRIER Anneleen (25/04/2003)
Temporary employment, employability and training. Leuven, K.U.Leuven, Facul-
teit Economische en toegepaste economische wetenschappen, 2003.

176. CARDINAELS Eddy (28/04/2003)
The role of cost system accuracy in managerial decision making.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2003. 144 pp.

242

177. DE GOEIJ Peter (02/07/2003)
Modeling Time-Varying Volatility and Interest Rates.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2003. VII+225 pp.

178. LEUS Roel (19/09/2003)
The generation of stable project plans. Complexity and exact algorithms.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2003.

179.MARINHEIRO Carlos (23/09/2003)
EMU and fiscal stabilisation policy : the case of small countries.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2003

180. BAESENS Bart (24/09/2003)
Developing Intelligent Systems for Credit Scoring using Machine Learning Tech-
niques.
Leuven, K.U.Leuven, Faculteit Economische en toegepaste economische weten-
schappen, 2003. 264 pp.

