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Preface

Fraud! Many stories about successful and unsuccessful perpetration
of fraudulent actions are going around. And if we are truly honest, we
enjoy hearing them. Fraud is something sensational that attracts the
attention of many people, and is in some way sexy and exciting. Ox-
ford Dictionary defines fraud as “the wrongful or criminal deception
to result in financial or personal gain”. According to this definition,
fraud is a broad concept, even including small-scale, low-impact activ-
ities where most people come up against at least once. Think about
withholding the fact that you accept too much change at a shop, or
buying a cheap, designer sunglass knowing that it is a fake, or when
you “borrowed” glasses from bars as a student, etc. While such stories
are the so-called “white collar” crimes which are rather innocent in
nature and are considered as ‘acceptable’ or ‘borderline acceptable’
(Smith et al., 2010), other stories are more notorious as they involve
huge amounts of money or the deception of large groups of people
or even whole countries. A couple of stories keep echoing through
history:

• The first well-known example of financial fraud is the sale of
the Roman Empire to Didius Julianus (193 AD) for 25000
sestertii per soldier (around 1 billion euros) by the Praetorian
guards who murdered the previous emperor Pertinax. Back
then, Praetorian guards were seen as the loyal army supporting
the current emperor. Unfortunately, the Praetorian guards
sold something that did not belong to them. Three months
later, Septimius Severus claimed the Empire back, decapitating
Didius Julianus (Dio, c. 170).
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Afterwards, many famous landmarks where unlawfully sold
through history: the Eiffel Tower by Victor Lustig (sold twice),
the Brooklyn Bridge by George C. Parker (sold twice a week for
30 years), the non-existing island Poyais off the coast of Hun-
duras by Gregor MacGregor, the Taj Mahal and the Parliament
House of India together with its members by Natwarlal, etc.

• In 1717, John Law was send to Louisiana in order to help in
the development of the French colony. He founded the Mis-
sissippi Company. When he briefed back to France about the
conditions, the French people were overwhelmed about stories
of massive amounts of gold and jewelry in the colony. Shares
of Mississippi Company skyrocketed. Unfortunately for the in-
vestors, it was all propaganda. When the investors realized it
was a conn, shares plummeted and many people lost all their
money. Nowadays, such fraud is known as the Mississippi bub-
ble.

• Another notorious example of deception, is a story from 1785
where Cardinal Prince de Rohan bought a diamond necklace of
more than two million livre for Queen Marie Antoinette with
whom he was having an affair. Unfortunately for de Rohan,
he was having an affair with a prostitute that resembled to the
Queen.

• The Baker Estate Swindle lasted for more than 70 years deceiv-
ing more than 3000 people for more than 3 million dollar. It all
started with Colonel Jacob Baker who died in 1839 in Philadel-
phia. At the time, Colonel Jacob Baker supposedly owned more
than a quarter of the whole city. Many years later, William
Cameron Morrow Smith founded an association to help the pre-
sumable heirs with tracing their family back to Jacob Baker and
claiming their inheritance which, according to the association,
would comprise more than 2000 acres of land. Many people
with last name Baker deposited money to support the associa-
tion. Unfortunately, there was no Baker estate (Nash, 2004).

• ...
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The list is endless and still growing. Although fraudsters operate
in the spirit of their time, resulting in new types of fraud that
continuously pop up, old-fashioned ways of perpetrating fraud are
constantly coming back and are still exploited. On the flip side,
fraud fighters in all areas have developed a profound set of skills and
techniques to prevent known criminal activities and to limit unseen
fraud.

This dissertation aims to fight fraud from a data science perspec-
tive. That is, the development of automated detection techniques
that are capable of processing massive amounts of data in a limited
time span which generate a highly accurate, meaningful and precise
output. Data science encompasses every theory, strategy and action
undertaken that use data, ranging from data definition and collection
to the interpretation, implementation and evaluation of knowledge
derived from data. To date, many businesses and industries start to
explore the world of data science, including data analysis and pre-
dictive modelling. Many successful use cases prove the power and
possibilities of data science, and its ability to support business de-
cisions in an accurate and efficient way. Examples include, among
others, credit risk modelling (Baesens et al., 2003a), customer churn
prediction (Verbeke et al., 2011; Backiel et al., 2014), process min-
ing (De Smedt et al., 2015; vanden Broucke et al., 2014), data quality
(Moges et al., under review), recommender systems (Seret et al., 2012)
and fraud detection.

In order to develop high-performing, efficient detection models, a
set of challenges need to be addressed. In Chapter 3, a more thorough
and detailed characterization of the multifaceted phenomenon of fraud
is given which states that fraud is an uncommon, well-considered,
imperceptibly concealed, time-evolving and often carefully organized
crime which appears in many types and forms. Each characteristic
is associated with particular challenges related to develop a fraud de-
tection model. Throughout this dissertation we will show how these
potential threats can be translated into opportunities. The main focus
of this work lies especially on the last two properties: how to leverage
social interactions among people, whilst taking into account that the
intensity of such interactions varies over time. The proposed tech-
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niques are tested on data of two application domains: social security
fraud (Chapter 3 - 5) and credit card fraud (Chapter 6).

Although this work tends towards a generic approach to tackle
fraud, there is no silver bullet solution. There are two reasons for
this. First, the development of fraud detection mechanisms and mod-
els requires the insights and knowledge of subject matter experts. It
is a two-way process: experts guide models, whilst models guide ex-
perts in turn. Experts are able to provide (a) a concise set of fraudu-
lent observations or transactions and (b) more details about the modi
operandi of fraudsters. While (a) is necessary to learn supervised de-
tection models, (b) is essential in both supervised and unsupervised
learning. In supervised learning, one learns from labeled (e.g., fraud or
non-fraud) observations and tries to predict the behavior of new, un-
seen instances. Unsupervised learning does not rely on labeled data,
but tries to find a hidden structure in the data. This work mainly
focuses on supervised fraud detection. Whereas traditional detection
techniques mainly use structured data, this dissertation shows the
value of a new data source: the social network, containing the social
relationships among people. A set of detection techniques based on
social network analysis is proposed. These techniques help the data
scientist to seize networked data by formulating the right network def-
inition, extracting useful and relevant features (i.e., the featurization
process), and enriching traditional fraud detection models which ulti-
mately tends to result in an increased performance and novel, valuable
insights.

A second reason why no silver bullet can exist is that newly
developed detection models force fraudsters to change their tactics.
Fraud is dynamic. Fraudsters learn from their mistakes and try
to find new loopholes. Models need to be continuously updated.
As such, the fight against fraud will remain a cat-and-mouse game
between the fraud fighter and perpetrator.

This dissertation does not claim to be a guide on how to stop fraud
in the end, but rather to sensitize about the power of data science in
fraud detection and to serve as a source of inspiration for every data
scientist that is entailed to uncover past, present and future methods
of fraudsters in any application domain.
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Chapter 1

Introduction

“The government are very keen on amassing
statistics. They collect them, add them, raise
them to the nth power, take the cube root and
prepare wonderful diagrams. But you must never
forget that every one of these figures comes in
the first instance from the village watchman, who
just puts down what he damn pleases.”

— Josiah Stamp, 1929

1.1 Data science

Data science is a booming industry. Recently, IDC reported that
investments in big data and data science would increase from $16.55
billion dollar in 2014 to about $41.52 billion in 2018. More and more
companies realize the potential asset that might come along with data
science. Rather than relying business decisions on pure intuition,
decisions are now based on statistically confirmed evidence extracted
from... data. Competition in terms of just doing data science no
longer suffices, it is now all about doing good data science. Harvard
Business Review even stated that a company’s effort on big data is
often lost. They say that the actual success of those investments
strongly depend on the ability of good people to use good data.1

1https://hbr.org/2013/12/you-may-not-need-big-data-after-all, re-
trieved on July 2015.

1
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Figure 1.1: Knowledge Discovery in Databases (KDD) process.

Only this will eventually result in good results and a worthwhile
return on analytics that effectively support the corporate decisions.
According to Baesens et al. (2015), the capabilities of a data scientist
are fivefold: a data scientist should (a) have solid quantitative
skills, (b) be a good programmer, (c) excel in communication and
visualization skills, (d) have a profound business understanding and
(e) be creative. Data science is seen as a multidisciplinary field.
Being a data scientist requires a thorough understanding of other
areas such as machine learning, data mining, statistics and often
profound business knowledge and insights, but then again it is the
sexiest job of the 21st century.2 Secondly, data should be reliable,
accurate and sound. It should reflect reality in the best way possible.
One of the oldest principles in data analysis is “garbage in, garbage
out”. A well thought-out data collection, storage and management
system is one of the indispensable requirements of good data analysis.

But what is data science exactly? Data science encompasses
every theory, strategy and action undertaken that use data, ranging
from data definition, collection and storage to the interpretation,
implementation and evaluation of knowledge derived from data. One
of the important pillars in data science is the KDD (Knowledge

2https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-

21st-century/, retrieved on July 2015.

https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century/
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century/
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Discovery in Databases) process, which describes how one has to
convert raw data into useful information and knowledge which serves
to support operational, tactical and strategical decision making. In
general, the KDD consists of five steps: data selection, pre-processing,
transformation, data mining and interpretation of the results. This
is depicted in Figure 1.1. Each knowledge generation problem has to
go through the several stages of the KDD process. This dissertation
is mainly situated in the transformation and data mining steps of
the KDD process by (a) transforming unstructured network data to
useful and meaningful features that can be used to support further
analysis, and (b) mining the data to find new evidence of fraud.
Remark that the data collection, pre-processing and evaluation steps
of the KDD process are also implicitly part of this dissertation, but
due to the sensitivity of the data at hand, it is not further considered.

The focus of this work is fraud detection, one of the applications
in the multifaceted research domain of data science. The aim is to
develop automated detection techniques which help fraud experts
in the fight against fraud. Fraud detection approaches data from
another perspective. Rather than searching for a pattern repeatedly
popping up in a data set, research in fraud tries to find abnormal
behavior or anomalies. Two remarks need to be made. First, under
the assumption that average behavior is normal, behavior of each
individual should be compared to the others. The question that
arises here is, “Is one’s behavior in line with overall behavior?”
This is compliance on data set level. Second, a sudden change in
customer’s personal behavior might also indicate fraud. This leads
to the following question: “Does one’s behavior comply with normal
behavior for that person?” A shift in a person’s spending patterns or
callee list may hint towards a stolen credit card or a telcom account
that is taken over. This is compliance on data item level. In this
dissertation, detection models that operate on both data set and
data item level are presented.

This dissertation is an interactive play between theory and prac-
tice. From a theoretical point of view, new approaches with regard
to fraud detection are proposed. State-of-the-art network analysis is
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used to enrich traditional detection models. Each chapters aims to
be generic. All approaches are evaluated on a real-life fraud data set.
Chapter 3-5 use data provided by the Belgian Social Security Instuti-
ton (social security fraud), Chapter 6 is tested on data from Worldline
(credit card fraud).

1.2 The fraud triangle

Without people having the tendency to commit fraud, this disserta-
tion would have never existed. This leads to an insurmountable, first
question, “Why do people commit fraud?”, or in other words, what
drives people to seize opportunities to commit fraud. In order to
understand the underlying motives or drivers of fraudsters, Cressey
(1953) developed the “fraud triangle” (see Figure 1.2). The triangle
analyzes the motives behind fraud from three angles:

R
at
io
na
liz
at
io
n

Fraud
triangle

Pressure

O
pportunity

Figure 1.2: The fraud triangle.

• Pressure: Pressure (or incentive, or motivation) is triggered by
something in a fraudster’s personal life that creates a stressful
need to proceed to illegal activities (Singleton and Singleton,
2010). The motives of fraud are rather personal and divergent.
Stamler et al. (2014) categorizes fraud motives into four main
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areas: economic, egocentric, idealistic and psychotic. The most
prevalent reason is economical in nature. It is often sourced from
the fact that people do not have the money they need (Stamler
et al., 2014). This does not necessarily mean that fraudsters
tend to obtain money in cash. In credit card fraud, a credit
card is unlawfully used to make purchases. Call behavior fraud
comprises the crime where fraudsters use the account of someone
else to make their calls. In insurance or healthcare fraud, people
abuse the system such that they are granted a allowance or are
exempted from payment. From an egocentric point of view,
people commit fraud to achieve prestige, a good reputation or
even fame at any expense. Scientific fraud, often carried out by
plagiarism, is an example where one illicitly steals someone else’s
ideas and results; or where one makes up the surrounding setting
and/or the results. The idealistic motive can be traced back as
a way of people to counterbalance discrimination. They often
believe that they act legally and blame their victims for their
actions. Psychotic motives include a distorted sense of reality,
delusions of grandeur or persecution (Singleton and Singleton,
2010).

• Opportunity: This angle comprise the ability of fraudster to
commit fraud. Loopholes in governmental laws or corporate
policies facilitate the perpetration of fraud. Opportunities range
from crimes committed in situations that coincidentally occur
– which are referred to by Smith et al. (2010) as “white collar”
crimes – to deliberately searching for ways to cheat.

• Rationalization: is a psychological mechanism that explains
why fraudsters do not refrain from committing fraud and think
of their conduct as acceptable (Baesens et al., 2015).

1.3 Types of fraud

Many types of fraud exist. Moreover, fraud is deeply influenced by the
time being. In ancient Rome, one of the most popular ways to swindle
was to quarry low-quality marble with many holes, filling these holes
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with wax and selling the marble for a high price.3 Nowadays, the
share of construction fraud has to make way for other, currently more
common types of fraud.

Based on Baesens et al. (2015), the following non-exhaustive list
of fraud categories is composed that are currently prevalent:

Credit card
fraud

In credit card fraud there is an unauthorized taking of
another’s credit. Some common credit card fraud sub-
types are counterfeiting credit cards (for the definition
of counterfeit, see below), using lost or stolen cards,
or fraudulently acquiring credit through mail (defini-
tion adopted from definitions.uslegal.com). Two
subtypes can been identified (Bolton and Hand, 2002):
(1) Application fraud, involving individuals obtaining
new credit cards from issuing companies by using false
personal information, and then spending as much as
possible in a short time span; (2) Behavioral fraud,
where details of legitimate cards are obtained fraudu-
lently and sales are made on a ‘Cardholder Not Present’
(CNP) basis. Remark that this does not necessarily re-
quire steeling the physical card, only steeling the card
credentials. Behavioral fraud concerns most of credit
card fraud. Also debit card fraud occurs, although less
frequent. Credit card fraud involves in fact a form of
identity theft, as will be defined below. Chapter 6 dis-
cusses a network-based approach on how to deal with
credit card fraud.

Insurance
fraud

Broad category spanning fraud related to any type
of insurance, both from the side of the buyer or
seller of an insurance contract. Insurance fraud from
the issuer (seller) includes selling policies from non-
existent companies, failing to submit premiums and
churning policies to create more commissions. Buyer

3http://www.fraud-magazine.com/article.aspx?id=4294972770, retrieved
on July 2015.

definitions.uslegal.com
http://www.fraud-magazine.com/article.aspx?id=4294972770
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fraud includes exaggerated claims (property insur-
ance: obtaining payment that is worth more than
the value of the property destroyed), falsified medi-
cal history (healthcare insurance: fake injuries), post-
dated policies, faked death, kidnapping or murder
(life insurance fraud), faked damage (automobile insur-
ance: staged collision), etc. (definition adopted from
www.investopedia.com).

Corruption Corruption is the misuse of entrusted power (by her-
itage, education, marriage, election, appointment or
whatever else) for private gain. This definition is sim-
ilar to the definition of fraud provided by the Oxford
Dictionary discussed before in that the objective is per-
sonal gain. It is different in that it focuses on misuse of
entrusted power. The definition covers as such a broad
range of different sub-types of corruption, so does not
only cover corruption by a politician or a public ser-
vant, but also e.g. by the CEO or CFO of a company,
the notary public, the team leader at a workplace, the
administrator or admissions-officer to a private school
or hospital, the coach of a soccer team, etc. (definition
adopted from www.corruptie.org).

Counterfeit An imitation intended to be passed off fraudulently or
deceptively as genuine. Counterfeit typically concerns
valuable objects, credit cards, identity cards, popular
products, money, etc. (definition adopted from www.

dictionary.com).

Product
warranty
fraud

A product warranty is a type of guarantee that a manu-
facturer or similar party makes regarding the condition
of its product, and also refers to the terms and situ-
ations in which repairs or exchanges will be made in
the event that the product does not function as origi-
nally described or intended. (definition adopted from
www.investopedia.com). When a product fails to of-
fer the described functionalities or displays deviating

www.investopedia.com
www.corruptie.org
www.dictionary.com
www.dictionary.com
www.investopedia.com
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characteristics or behavior that are a consequence of
the production process and not a consequence of mis-
use by the customer, compensation or remuneration by
the manufacturer or provider can be claimed. When
the conditions of the product have been altered due
to the customer’s use of the product, then the war-
ranty does not apply. Intentionally wrongly claiming
compensation or remuneration based upon a product
warranty is called product warranty fraud.

Healthcare
fraud

Healthcare fraud involves the filing of dishonest health-
care claims in order to make profit. Practitioner sche-
mes include: individuals obtaining subsidized or fully-
covered prescription pills that are actually unneeded
and then selling them on the black market for a profit;
billing by practitioners for care that they never ren-
dered; filing duplicate claims for the same service ren-
dered; billing for a non-covered service as a covered
service; modifying medical records, etc. Members can
commit healthcare fraud by providing false informa-
tion when applying for programs or services, forg-
ing or selling prescription drugs, loaning or using an-
other’s insurance card, etc. (definition adopted from
www.law.cornell.edu).

Opinion
fraud

Online reviews often have a major impact on the pop-
ularity of a certain product or service. As a result, re-
view systems are often targeted by opinion spammers
who seek to distort the perceived quality of a product
by creating fraudulent reviews. Opinion fraud involves
reviewers (often paid) writing bogus reviews (Akoglu
et al., 2013).

Telecom-
munica-
tions
fraud

Telecommunication fraud or call behavior fraud is the
theft of telecommunication services (telephones, cell
phones, computers, etc.) or the use of telecommuni-
cation services to commit other forms of fraud (defini-
tion adopted from itlaw.wikia.com). An important

www.law.cornell.edu
itlaw.wikia.com
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example concerns cloning fraud, i.e. the cloning of a
phone number and the related call credit by a fraud-
ster, which is an instance of superimposition fraud in
which fraudulent usage is superimposed upon (added
to) the legitimate usage of an account (Fawcett and
Provost, 1997).

Money
laundering

The process of taking the proceeds of criminal activ-
ity and making them appear legal. Laundering al-
lows criminals to transform illegally obtained gain into
seemingly legitimate funds. It is a worldwide problem,
with an estimated $300 billion going through the pro-
cess annually in the United States (definition adopted
from legal-dictionary.thefreedictionary.com).

Click fraud Click fraud is an illegal practice that occurs when
individuals click on a website’s click-through adver-
tisements (either banner ads or paid text links) to
increase the payable number of clicks to the adver-
tiser. The illegal clicks could either be performed by
having a person manually click the advertising hyper-
links or by using automated software or online bots
that are programmed to click these banner ads and
pay per click text ad links (definition adopted from
www.webopedia.com).

Identity
theft

The crime of obtaining personal or financial infor-
mation of another person for the purpose of taking
over that person’s name or identity in order to make
transactions or purchases. Some identity thieves sift
through trash bins looking for bank account and credit
card statements; other more high-tech methods involve
accessing corporate databases to steal lists of customer
information (definition adopted from www.investope-

dia.com).

Tax
evasion

Tax evasion is the illegal act or practice of failing to pay
taxes which are owed. In businesses, tax evasion can
occur in connection with income taxes, employment

legal-dictionary.thefreedictionary.com
www.webopedia.com
www.investope-dia.com
www.investope-dia.com
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taxes, sales and excise taxes, and other federal, state,
and local taxes. Examples of practices which are con-
sidered tax evasion: knowingly not reporting income or
under-reporting income, i.e. claiming less income than
you actually received from a specific source (definition
adopted from biztaxlaw.about.com). Chapter 3 - 5
tackle social security fraud which is a type of tax eva-
sion (see infra).

Plagiarism Plagiarizing is defined by Meriam Webster’s online dic-
tionary as to steal and pass off (the ideas or words of
another) as one’s own, to use (another’s production)
without crediting the source, to commit literary theft,
to present as new and original an idea or product de-
rived from an existing source. It involves both stealing
someone else’s work and lying about it afterward (def-
inition adopted from www.plagiarism.org).

The approaches developed in this dissertation are applied on (a) social
security fraud, which is a form of corporate tax evasion, and (b) credit
card fraud. Although we lack data from other application domains,
these approaches are promising for similar problem settings.

1.4 Outline and contributions

In this section, we highlight the outline and main contributions of each
chapter in this dissertation. Chapter 2 is an introductory chapter,
familiarizing the reader with network analytics in a fraud context.
Chapter 3 - 5 develop network-based detection techniques to address
social security fraud. The last chapter 6 deals with how to tackle
credit card fraud from a network-based perspective.

1.4.1 Chapter 2

In this chapter, the reader is introduced to the main concepts of net-
work analysis and why network analysis might provide useful infor-
mation to enrich traditional fraud detection techniques. In general,
the following topics are discussed:

biztaxlaw.about.com
www.plagiarism.org
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• This chapter provides a detailed overview of networks and their
components, accompanied by examples of fraud networks that
can easily be created using in-house business data. In addition,
it is argued that the network can be represented (a) graphi-
cally for visualization purposes which are often part of the pre-
and post-processing phase, and (b) mathematically for the auto-
mated computation of useful statistics and extraction of mean-
ingful features.

• The concept of homophily is reviewed, and how this can serve as
a primary indication whether the network might contain mean-
ingful and relevant information for fraud detection. Two main
approaches to measure homophily are discussed.

• The featurization process is introduced which addresses how un-
structured network information can be translated into a set of
structured features for each observation.

Chapter 2 has been published in:

Bart Baesens, Véronique Van Vlasselaer, and Wouter Verbeke. Fraud
Analytics Using Descriptive, Predictive, and Social Network Tech-
niques: A Guide to Data Science for Fraud Detection. John Wiley &
Sons, 2015.

1.4.2 Chapter 3

This chapter provides a framework on how to incorporate insights
from network analysis into fraud detection models. The main focus
of this chapter is to identify individual fraudsters. The proposed ap-
proach is named Gotcha!.

• From a data science perspective, a definition of fraud is pre-
sented identifying the main challenges that concur with fraud.
The definition serves as a guiding principle throughout this and
the next chapters, systematically addressing each challenge in
order to develop a generic approach to tackle fraud.
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• An extensive literature review is conducted including all research
related to automated fraud detection using machine learning and
network analysis.

• A novel, generic, scalable and integrated approach on how (so-
cial) network analytics can improve the performance of tradi-
tional fraud detection models in a social security fraud context
is developed. The proposed approach is called Gotcha! which
exploits bipartite graphs in a timely manner.

• Given a limited set of fraudulent nodes in the network, Gotcha!
propagates fraud through the network, threating fraud as a virus
contaminating nearby neighbors. A time-dependent exposure
score for each node in the network is derived.

• Gotcha! is both forgiving and proactive in nature by anticipat-
ing future fraud whilst simultaneously decaying the importance
of past fraud.

Chapter 3 has been submitted for publication in:

Véronique Van Vlasselaer, Tina Eliassi-Rad, Leman Akoglu, Monique
Snoeck, and Bart Baesens. Gotcha! network-based fraud detection
for social security fraud. Management Science, under review.

In addition, Chapter 3 has been published in:

Véronique Van Vlasselaer, Jan Meskens, Dries Van Dromme, and
Bart Baesens. Using social network knowledge for detecting spider
constructions in social security fraud. In Proceedings of the 2013
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), pages 813–820. IEEE, 2013.

1.4.3 Chapter 4

Rather than focusing on individual fraudulent behavior, Chapter 4
elaborates on finding cliques of fraudsters, the so-called guilt-by-
constellation. Using the properties of confirmed fraudulent cliques,
Gotcha’ll! is able to detect uncovered groups in order to disband
the complete fraudulent structure.
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• As the structure of bipartite graphs differs from one-mode
graphs, a new definition of cliques is proposed.

• Using a time-dependent individual exposure score of every node,
cliques in the network are assigned a suspiciousness score which
expresses the extent to which a clique acts suspiciously.

• Rather than guiding learning algorithms by confirmed fraud,
Gotcha’ll! aims to learn from the structure of cliques, and
the local properties of the clique members. It is shown that
bankruptcy is an important indicator and often comes along
with fraud.

Chapter 4 has been published in:

Véronique Van Vlasselaer, Leman Akoglu, Tina Eliassi-Rad, Monique
Snoeck, and Bart Baesens. Guilt-by-constellation: fraud detection by
suspicious clique memberships. In Proceedings of 48th Annual Hawaii
International Conference on System Sciences (HICSS), 2015.

1.4.4 Chapter 5

This chapter investigates how active inference fosters the fraud detec-
tion process for social security fraud. The goal is to select a limited set
of nodes to be probed – i.e., inspected to confirm the true label – such
that the misclassification cost of the collective inference algorithm is
minimized. The proposed approach is called Afraid.

• Afraid is a new approach for active inference in a timely man-
ner by (1) using time-evolving graphs, and (2) weighing inspec-
tors’ decisions according to recency. (1) This contribution is
more elaborately discussed in Chapter 3. (2) Given that an in-
spector labels a specific node at time t, this chapter proposes
how to temporarily integrate an inspector’s decision in the net-
work model, decreasing the value of the decision over time.

• A combination of fast and simple probing strategies is proposed
to identify nodes that might possibly distort the results of a
collective inference approach. Probing decisions made by (1)
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a committee of local classifiers, and (2) by insights provided by
inspectors are evaluated. (1) A committee of local classifiers col-
lectively votes for the most uncertain nodes without relying on
domain expertise. (2) Inspectors use their intuition to formalize
which nodes might distort the collective inference techniques

• In fraud, inspectors often have a limited budget at their disposal
to investigate suspicious instances. The benefits of investing a
part of the total budget in learning a better model are investi-
gated.

Chapter 5 has been published in:

Véronique Van Vlasselaer, Tina Eliassi-Rad, Leman Akoglu, Monique
Snoeck, and Bart Baesens. Afraid: fraud detection via active infer-
ence in time-evolving social networks. In Proceedings of the 2015
IEEE/ACM International Conference on Advances in Social Network
Analysis and Mining (ASONAM), IEEE, 2015.

1.4.5 Chapter 6

Chapter 6 presents a new approach, named Apate, on how to fight
credit card transaction fraud.

• The requirements imposed by the credit card transaction do-
main differ from those of the social security domain. The net-
work consists of credit card holders and merchants connected by
means of transactions. Instead of starting from a limited set of
fraudulent nodes (in social security fraud: companies), Apate
uses a set of confirmed fraudulent edges (i.e., the transactions)
to propagate fraud through the network. This chapter shows
how this can be done by opening up the bipartite graph to a
tripartite structure.

• A new incoming transaction is evaluated whether it is in line
with normal customer behavior. Intrinsic or local-only features
are derived using the fundamentals of RFM (Recency – Fre-
quency – Monetary Value), enriched with features from the net-
work.
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• Apate complies with the six-second rule of decision, i.e. within
six seconds the Apate algorithm decides whether a transaction
can or cannot be pursued.

Chapter 6 has been published in:

Véronique Van Vlasselaer, Cristián Bravo, Olivier Caelen, Tina
Eliassi-Rad, Leman Akoglu, Monique Snoeck, and Bart Baesens.
Apate: A novel approach for automated credit card transaction fraud
detection using network-based extensions. Decision Support Systems,
75:38–48, 2015.





Chapter 2

Fraud! A Social Network
Approach

In the last decade, the use of social media web sites in everybody’s
daily life is booming. People can continue their conversations on on-
line social network sites like Facebook, Twitter, LinkedIn, Google+,
Instagram, etc. and share their experiences with their acquaintances,
friends, family, etc. It only takes one click to update your whereabouts
to the rest of the world. Plenty of options exist to broadcast your cur-
rent activities: by picture, video, geo-location, links, or just plain text.
You are on the top of the world... and everybody’s watching. And
this is where it becomes interesting.

Users of on-line social network sites explicitly reveal their rela-
tionships with other people. As a consequence, social network sites
are an (almost) perfect mapping of the relationships that exist in the
real world. We know who you are, what your hobbies and interests
are, to whom you are married, how many children you have, your
buddies with whom you run every week, your friends of the wine
club, etc. This whole interconnected network of people knowing each
other somehow, is an extremely interesting source of information and
knowledge. Marketing managers no longer have to guess who might
influence whom to create the appropriate campaign. It is all there....
And that is exactly the problem. Social network sites acknowledge
the richness of the data sources they have, and are not willing to
share them as such and free of cost. Moreover, those data are often
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privatized and regulated, and well-hidden from commercial use. On
the other hand, social network sites offer many good built-in facili-
ties to managers and other interested parties to launch and manage
their marketing campaigns by exploiting the social network, without
publishing the exact network representation.

However, companies often forget that they can reconstruct (a
part of) the social network using in-house data. Telecommunication
providers, for example, have a massive transactional data base where
they record call behavior of their customers. Under the assumption
that good friends call each other more often, telcom providers are
able to recreate the network and indicate the tie strength between
people based on the frequency and/or duration of calls (Backiel et al.,
2014). Internet infrastructure providers might map the relationships
between people using their customers’ IP-addresses. IP-addresses
that frequently communicate are represented by a stronger relation-
ship. In the end, the IP-network will envisage the relational structure
between people from another point of view, but to a certain extent
as observed in reality. Many more examples can be found in e.g. the
banking, retail and online gaming industry.

Also, the fraud detection domain might benefit from the analysis
of social networks. In this dissertation, we underline the social char-
acter of fraud. This means that we assume that the probability of
someone committing fraud depends on the people (s)he is connected
to. These are the so-called guilt-by-associations (Koutra et al., 2011).
If we know that five friends of Bob are fraudsters, what would we say
about Bob? Is he also likely to be a fraudster? If these friends are
Bob’s only friends, is it more likely that Bob will be influenced to
commit fraud? What if Bob has 200 other friends, will the influence
of these five fraudsters be the same?

This chapter will briefly introduce the reader to networks and
their applications in a fraud detection setting. One of the main
questions answered throughout this chapter is how to represent a
network for (a) visualization purposes, and (b) in a mathematically
interesting manner. Next, the concept of homophily is reviewed.
Homophily measures the extent to which fraudsters are connected to
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other fraudsters, and is a way of deciding upfront whether detection
models might benefit from network analysis. Next, we enter upon
how unstructured network information can be translated into useful
and meaningful characteristics of a subject. This is referred to as the
featurization process. The main approach taken in this dissertation
is to enrich traditional data analysis techniques with network-based
features.

The remainder of this chapter is organized as follows: in Sec-
tion 2.1 networks, their components and representation are discussed.
Section 2.2 focuses on the concept homophily. Section 2.3 contin-
ues with a brief overview of neighborhood and centrality metrics that
can be derived from the network. Additionally, collective inference
algorithms are discussed. Section 2.4 concludes this chapter.

2.1 It’s the network, you stupid!

Networks are everywhere. Making a telephone call requires setting up
a communication over a (wired) network of all possible respondents by
sending voice packages between the caller and the callee. The supply
of water, gas and electricity for home usage is a complex distribution
network that consists of many source, intermediary and destination
points where sources need to produce enough output such that they
meet the demand of the destination points. Delivery services need to
find the optimal route to make sure that all the packages are delivered
at their final destination as efficiently as possible. Even a simple trip
to the store involves the processing of many networks. What is the
best route to drive from home to the store given the current traffic?
Given a shopping list, how can I efficiently visit the store such that I
have every product on my list?

One of humans’ talents is exactly the processing of these networks.
Subliminally, people have a very good sense in finding an efficient
way through a network. Consider your home-work connection,
depending on the time and the day, you might change your route to
go from home to work without explicitly drawing the network and
running some optimization algorithm. Reaching other people, even
without the telecommunication media of nowadays like telephone and
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Figure 2.1: Köningsberg bridges.

internet, is often an easy task for people. There is always a friend of
a friend who knows the guy you are looking for.

The mathematical study of optimizing network-related problems
has been introduced many years ago by Euler (1736). He formulated
the problem of the Köningsberg bridges. Köningsberg (now Kalin-
ingrad) was a city in Lithuania which was divided into four parts by
the river Pregel. Seven bridges connected the four banks of the city
(see Figure 2.1). The problem is as follows, ‘Does there exist a walk-
ing route that crosses all seven bridges exactly once?’ A path that
can traverse all edges (here: bridges) of a network exactly once, is
an Eulearian path. Euler proved that such path cannot exist for the
Köningsberg bridge problem. More specifically, an Eulerian path only
exists when all nodes (here: banks) are reached by an even number of
edges, except for the source and sink node of the path which should
have an odd number of bridges pointing to it. Analogously, a Hamil-
tonian path in the network is a path that visits each node exactly
once. For example, the Travelling Salesman Problem (TSP) tries to
find a Hamiltonian path in the network. Given a set of cities, the idea
is that a salesman has to visit each city (i.e., node) exactly once to
deliver the packages. As this is an NP-hard problem, research mainly
focuses on finding good heuristics to solve the TSP.
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2.1.1 Social networks

Although in the previous example networks are built and developed
by humans, they are not social. A key question here is, ‘What makes
a network social?’ In general, we might say that a network is social
whenever the actors are people or groups of people. A connection
between actors is based on any form of social interaction between
them, such as a friendship. As in the real world, social networks are
also able to reflect the intensity of a relationship between people.
How well do you know your contacts? The relationship between two
best friends completely differs from the relationship between two
distant acquaintances. Those relationships and their intensity are an
important source of information exchange.

The psychologist Stanley Milgram measured in 1967 how social
the world is. He conducted a Small World experiment whereby he
distributed 100 letters to random people all over the world. The task
at hand was to return the letter to a specified destination, which was
one of Milgram’s friends. Rather than sending the letter back by mail,
people could only pass the letter to someone they knew. This person,
on their turn, had to forward the letter to one of his/her contacts, and
so on... until the letter reached its final destination. Milgram showed
that, on average, each letter reached its destination within six hops.
That is, less than six people are needed to connect two random people
in the network. This is the average path length of the network. The re-
sult of the experiment is widely known as the Six Degrees of Separation
theorem. Milgram also found that many letters reached their target
destination within three steps. This is due to the so-called “funneling
effect”. Some people are known and know many other people, often
from highly diverse contact groups (e.g., work, friends, hobby, etc.).
Those people are sociometric superstars, connecting different parts of
the network to each other. Many paths in the network pass through
these people, giving them a high betweenness score (see Section 2.3).

While the Six Degrees of Separation theorem is based on results
in real-life, many studies already proved that an average path length
of six is an overestimation in online social networks. Those studies
reported an average path length of approximately four hops between
any two random people in an online social network (Kwak et al., 2010;
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Figure 2.2: Identity theft. The frequent contact list (C1-C6) of a person is
suddenly extended with other contacts (dark nodes). This might indicate
that a fraudster (dark node in the center) took over that customer’s account
and “shares” his/her contacts.

Van Vlasselaer et al., 2012). Online social networks are thus denser
than real-life networks. However, the intensity between relationships
might strongly differ.

Social networks are an important element in the analysis of fraud.
Fraud is often committed through illegal set-ups with many accom-
plices. When traditional analytical techniques fail to detect fraud
due to a lack of evidence, social network analysis might give new in-
sights by investigating how people influence each other. These are
the so-called guilt-by-associations, where we assume that fraudulent
influences run through the network. For example, insurance compa-
nies often have to deal with groups of fraudsters, trying to swindle by
resubmitting the same claim using different people. Suspicious claims
often involve the same claimers, claimees, vehicles, witnesses, etc. By
creating and analyzing an appropriate network, inspectors might gain
new insights in the suspiciousness of the claim and can prevent the
pursue of the claim.

In social security fraud, employers try to avoid paying their tax
contributions to the government by intentionally going bankrupt.
Bankrupt employers are not capable to redeem their tax debts to
the government, and are discharged from their obligations. However,
social network analysis reveals that the employer is afterwards re-
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Figure 2.3: Network representation.

founded using almost the same structure (see Chapter 3). As such,
using social network analysis, fraud experts are able to declare the
foundation of the new employer unlawfull and still recover the out-
standing debts. Opinion fraud occurs when people untruthfully praise
or criticize a product in a review. Especially online reviews lack con-
trol to establish the genuineness of the review. Matching people to
their reviews and comparing the reviews with others using a network
representation, enables review web sites to detect the illicit reviews.

Identity theft is a special form of social fraud, as introduced in
Chapter 1, where an illicit person adopts another person’s profile.
An example of identity theft is the takeover of one’s phone number.
This is depicted in Figure 2.2. The light-colored node in the center
is the true owner of the phone number, surrounded by his/her
frequent contact list (contact C1-C6). The figure indicates that in
an illicit takeover, the current contact list of a person is expanded
with new contacts (dark nodes connected with a dashed line to
owner), associated with a fraudster’s previous account (dark node
in the center). This comprises the fact that fraudsters often cannot
withstand to call their family, friends, acquaintances, etc. The
frequent contact list of the fraudster is a strong indicator for fraud.

While networks are a powerful visualization tool, they mainly serve
to support the findings by automated detection techniques. We will
focus on how to extend the detection process by extracting useful and
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Figure 2.4: Example of a (un)directed graph.

meaningful features from the network. The network representation
can be used afterwards to verify the obtained results.

2.1.2 Network components

This section will introduce the reader to graph theory, the mathemat-
ical foundation for the analysis and representation of networks.

Complex network analysis (CNA) studies the structure, charac-
teristics and dynamics of networks that are irregular, complex and
dynamically evolving in time (Boccaletti et al., 2006). Those net-
works often consist of millions of closely interconnected units. Most
real-life networks are complex. CNA uses graph theory to extract use-
ful statistics from the network. Boccaletti et al. (2006) define graph
theory as the natural framework for the exact mathematical treat-
ment of complex networks, and, they state that formally, a complex
network is represented as a graph.

A graph G(V, E) consists of a set V of vertices or nodes (the points)
and a set E of edges or links (the lines connecting the points). This is
illustrated in Figure 2.3. A node v ∈ V represents real-world objects
such as people, computer, activities, etc. An edge e ∈ E connects two
nodes in the network, and

e(v1, v2)|e ∈ E and vi ∈ V. (2.1)
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Figure 2.5: Follower-followee relationships in a Twitter network.

An edge represents a relationship between the nodes it connects,
such as a friendship (between people), a physical connection (between
computers), attendance (of a person to an event), etc. A graph where
the edges impose an order or direction between the nodes in the net-
work, is a directed graph. If there is no order in the network, we say
that the graph is undirected. This is shown in Figure 2.4. The so-
cial network web site Twitter can be represented as a directed graph.
Users follow other users, without necessarily being re-followed. This
is expressed by the follower-followee relationships, and is illustrated
in Figure 2.5. User 1 follows User 2, 3 and 5 (follower relationships),
and is followed by User 4 and 5 (followee relationship). There is a
mutual relationship between User 1 and 5.

In general, edges connect two nodes to each other. However, some
special variants are sometimes required to accurately map the reality
(see Figure 2.6):

• Self-edge: a self-edge is a connection between the node and
itself. E.g., a person who transfers money from his/her account
to another account s/he owns.

• Multi-edge: a multi-edge exists when two nodes are connected
by more than one edge. E.g., in credit card transaction fraud,
a credit card holder is linked to a merchant by a multi-edge if
multiple credit card transactions occurred between them. Multi-
edges will be discussed in Chapter 6.

• Hyper-edge: a hyper-edge is an edge that connects more than
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(a) Self-edge (b) Multi-edge (c) Hyper-edge

Figure 2.6: Edge representation.

one node in the network. E.g., three people who went to the
same event.

A graph where the edges express the intensity of the relationships,
is a weighted graph Gw(V, E).

• Binary weight: This is the standard network representation.
Here, the edge weight is either 0 or 1, and reflects whether or
not a link exists between two nodes. An extension of the binary
weighted graphs are the signed graphs where the edge weight
is negative (-1), neutral (0) or positive (1). Negative weights
are used to represent animosity, and positive weights are used
to represent friendships. Neutral weights represent an “I don’t
know you”-relationship.

• Numeric weight: A numeric edge weight expresses the affinity
of a person to other persons s/he is connected to. High values
indicate a closer affiliation. As people do not assign a weight
to each of their contacts by themselves, many approaches are
proposed to define an edge weight between nodes. A popular
way is the Common Neighbor approach. That is, the edge weight
equals the total number of common activities or events both
people attended. An activity/event should be interpreted in a
broad sense: the total number of messages sent between them,
common friends, likes on Facebook, etc.

• Normalized weight: The normalized weight is a variant of the
numeric weight where all the outgoing edges of a node sum up
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Figure 2.7: Example of a fraudulent network.

to 1. The normalized weight is often used in influence propaga-
tion over a network.

• Jaccard weight: The edge weight depends on how “social”
both nodes are (Gupte and Eliassi-Rad, 2012), and

w(v1,v2) =
|Γ(v1) ∩ Γ(v2)|
|Γ(v1) ∪ Γ(v2)| (2.2)

with Γ(vi) the number of events node vi attended. For example,
assume that person A attended 10 events and person B attended
5 events. They both went to 3 common events. Then, according
to the Jaccard Index, their edge weight equals 1/4.

Edge weights represent the connectivity within a network, and
are in some way a measure of the sociality between the nodes in
the network. Nodes, on the other hand, use labels to express the
local characteristics. Those characteristics are mostly proper to the
node itself and may include e.g. demographics, preferences, interests,
beliefs, etc. When analyzing fraud networks, we integrate the fraud
label of the nodes into the network. A node can be fraudulent or
legitimate, depending on the condition of the object it represents.
For example, Figure 2.7 shows a fraud network where legitimate
and fraudulent people are represented by light- and dark-colored
nodes respectively. Given this graph, we know that node A and B
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Figure 2.8: An egonet. The ego is surrounded by 6 alters of whom 2 are
legitimate (light-colored) and 4 are fraudulent (dark-colored).

committed fraud beforehand. Node C is a friend of node A and is
influenced by the actions of node A. On the other hand node D is
influenced by both node A and B. A simple conclusion would be that
node D has the highest propensity of perpetrating fraud, followed by
node C.

While real-life networks often contain billions of nodes and mil-
lions of links, sometimes the direct neighborhood of nodes provides
enough information to base decisions on. An ego-centered network or
egonet represents the one-hop neighborhood of the node of interest. In
other words, an egonet consists of a particular node and its immediate
neighbors. The center of the egonet is the ego, and the surrounding
nodes are the alters. An example of an egonet is illustrated in Fig-
ure 2.8. Such networks are also called the first-order neighborhood
of a node. Analogously, the n-order neighborhood of a node encom-
passes all the nodes that can be reached within n hops from the node
of interest.

2.1.3 Network representation

Transactional data sources often contain information about how en-
tities relate to each other, e.g., call record data, bank transfer data,
etc. An example transactional data source of credit card fraud is
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234

Credit Card Merchant

82020922171246263
18879400000202544
2070050002009251
1809340000672044

...

207005 056 USA
105930 IRL
79768 612 BEL
11525 056 BEL

... ... ...

No
No
No
No

...

Merchant 
Category Country Amount Time stamp ACCEPT FRAUD

4520563752703209
5542610001561826

323158
68080

056
735

USA
FRA

2014-11-06 00:28:40
112.99 2014-11-06 00:28:38 TRUE
3.58
149.50 2014-11-06 00:28:47
118.59 2014-11-06 00:28:49

... ...

...22.27
50.00

2014-11-06 00:28:50
2014-11-06 00:28:51

TRUE
TRUE
FALSE
TRUE
TRUE

Yes
No

Figure 2.9: Example of credit card transaction data.

given in Figure 2.9. Each line in the transactional data source repre-
sents a money transfer between two actors: a credit card holder and
a merchant. Despite the structured representation of the data, the
relationships between credit card holders and merchants are hard to
capture. Real-life data sources contain billions of transactions, making
it impossible to extract correlations and useful insights. Network vi-
sualization tools offer a powerful solution to make information hidden
in networks easy to interpret and understand. Inspecting the visual
representation of a network can be part of the preprocessing phase
as it familiarizes the user with the data and can often quickly result
in some first findings and insights. In the post-processing phase, the
network is a useful representation to verify the obtained results and
understand the rationale. In general, a network can be represented in
two ways:

• Graphically

• Mathematically

The graphical representation of a network, or sociogram, is the
most intuitive and straightforward visualization of a network. A
toy example of a credit card fraud network is shown in Figure 2.10.
Credit card holders are modeled by rectangles, the merchants by
circles. Solid (dashed) edges represent legitimate (fraudulent) trans-
actions. Based on the figure, we expect that the credit card of user
Y is stolen and that merchant 1 acts suspiciously. The sociogram
can be used to present results at different levels in an organization:
the operational, tactical and strategic management all benefit from



30 2.1. IT’S THE NETWORK, YOU STUPID!

Y

Z

X1

11

2
3

4
5

6

7

8

9

10

Figure 2.10: Toy example of credit card fraud.

interpreting the network representation by evaluating how to detect
and monitor suspicious business processes (operational), how to act
upon it (tactical) and how to deal with fraud in the future and take
prevention measures (strategic).

While graphical network representations are mainly appropriate
for visualization purposes, it is an unstructured form of data and
cannot be used to compute useful statistics and extract meaningful
characteristics. As a consequence, there is an urge to represent the
network in a mathematically interesting way. The adjacency matrix
and the adjacency list are two network representations that fulfill
these requirements. The adjacency or connectivity matrix A(n×n) is a
matrix of size n× n with n the number of nodes in the network; and
a(i,j) = 1 if a link exists between node i and j, and a(i,j) = 0 otherwise.
Figure 2.11a shows an example of a small undirected network. The
corresponding adjacency matrix is depicted in Figure 2.11b. Remark
that the adjacency matrix is a sparse matrix, containing many zero
values. This is often the case in real-life situations. Social networks
have millions of members, but people are only connected to a small
number of friends - e.g., in 2012, Twitter had 500M users and each
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Figure 2.11: Mathematical representation of (a) a sample network : (b) the
adjacency or connectivity matrix; (c) the weight matrix; (d) the adjacency
list and (e) the weight list.
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user follows approximately 200 other users.1 The adjacency matrix of
a undirected network, as presented here, is symmetric, whilst the ad-
jacency matrix of an directed network is asymmetric. The adjacency
matrix of a network records which nodes are connected to each other,
irrespective of the edge weight. The weight matrix W (n×n) expresses
the edge weight between the nodes of a network, and w(i,j) ∈ R if
a link exists between node i and j, and w(i,j) = 0 otherwise. The
weight matrix of the sample network is given in Figure 2.11c. The
adjacency list is an abstract representation of the adjacency matrix,
and provides a list of all the connections present in the network. A
relationship between node vi and node vj is denoted as (vi, vj). This is
illustrated in Figure 2.11d. The weight list extends the adjacency list
by specifying the weights of the relationships, and has the following
format (vi, vj , w(i,j)) with w(i,j) the weight between node vi and node
vj (see Figure 2.11e).

2.2 Is fraud a social phenomenon? An intro-
duction to homophily

One of the essential questions before analyzing the network regarding
fraud, is deciding whether the detection models might benefit from
CNA (Complex Network Analysis). In other words, do the relation-
ships between people play an important role in fraud, and is fraud
a contagious effect in the network? Are fraudsters randomly spread
over the network, or are there observable effects indicating that fraud
is a social phenomenon, i.e. fraud tends to cluster together. We look
for evidence that fraudsters are possibly exchanging knowledge about
how to commit fraud using the social structure. Fraudsters can be
linked together as they seem to attend the same events/activities, are
involved in the same crimes, use the same set of resources, or even
are sometimes one and the same person (see also identity theft).

Homophily is a concept borrowed from sociology and boils down
to the expression: “Birds of a feather flock together”. People have a
strong tendency to associate with others whom they perceive as being

1http://news.yahoo.com/twitter-statistics-by-the-numbers-

153151584.html, retrieved on July 2015.

http://news.yahoo.com/twitter-statistics-by-the-numbers-153151584.html
http://news.yahoo.com/twitter-statistics-by-the-numbers-153151584.html
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Figure 2.12: A homophilic network.

similar to themselves in some way (Newman, 2010). Friendships are
mostly built because of similar interests, same origin, high school,
neighborhood, hobbies, etc. or even the tendency to commit fraud.
Relationships determine which people are influenced by whom and
the extent to which information is exchanged.

A network is homophilic if nodes with label x (e.g., fraud) are to
a larger extent connected to other nodes with label x. In market-
ing, the concept of homophily is frequently exploited to assess how
individuals influence each other, and to determine which people are
likely responders and should be targeted with a marketing incentive.
For example, if all John’s friends are connected to telecom provider
Beta, John is likely to sign the same contract with provider Beta. A
network that is not homophilic, is heterophilic.

The same reasoning holds in fraud. We define a homophilic
network as a network where fraudsters are more likely to be con-
nected to other fraudsters, and legitimate people are more likely to
be connected to other legitimate people.

Advanced network techniques take into account the time dimen-
sion. Few fraudulent nodes that are popping up together in the net-
work might indicate a newly originating web of fraud, while subgraphs
characterized with many fraudulent nodes are far-evolved structures.
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Preventing the growth of new webs and the expansion of existing webs
are important challenges that both need to be addressed in the fraud
detection models.

We already showed that a graphical representation might give a
first indication of the homophilic character of the network, and thus
whether network analysis might make sense in the fraud detection
task at hand. Mathematically, a network is homophilic if fraudulent
nodes are significantly more connected to other fraudulent nodes, and
as a consequence, legitimate nodes connect significantly more to other
legitimate nodes. More concretely, let l be the fraction of legitimate
nodes in the network and f the fraction of fraudulent nodes in the net-
work, then 2lf is the expected probability that an edge connects two
dissimilar labeled nodes. These edges are called cross-labeled edges. A
network is homophilic if the observed fraction of cross-labeled edges r̂
is significantly less than the expected probability 2lf , i.e. if the null
hypothesis

H0 : r̂ ≥ 2lf (2.3)

can be rejected. Consider Figure 2.12. The dark-colored (light-
colored) nodes are the fraudsters (legitimate people). The network
consists in total of 12 nodes: 8 legitimate nodes and 4 fraudulent
nodes. The fraction l and f equal 8

12 and 4
12 respectively. In a

random network, we would expect that 2lf = 2 · 8
12 · 4

12 = 8
18 edges

are cross-labeled. The network in Figure 2.12 has 5 cross-labeled
edges, and 3 fraud and 10 legit same-labeled edges. The observed
fraction of cross-labeled edges is thus r̂ = 5

18 . We expect to see 8
edges in the network that are cross-labeled, instead of the 5 edges we
observe. The null hypothesis H0 is rejected with a significance level
of α = 0.05 (p-value of 0.02967) using a one-tailed proportion test
with a normal approximation. The network is homophilic.

Other measures to assess whether there are significant patterns of
homophily present in the network include dyadicity and heterophilic-
ity (Park and Barabási, 2007). In many systems the number of
links between nodes sharing a common property is larger than if
the characteristics were distributed randomly in the network. This
is the dyadic effect. For a network where the labels can only take
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two values, 1 (Fraud) and 0 (Legitimate), let n1(n0) be the num-
ber of fraudulent (legitimate) nodes and N = n0 + n1 . Now, we
can define three types of dyads: (1 - 1), (1 - 0), and (0 - 0),
indicating the label (Fraud − Fraud), (Fraud − Legitimate) and
(Legitimate − Legitimate) of two end points connected by a link.
The total number of dyads of each kind are represented as m11, m10

and m00 respectively, and M = m11 + m10 + m00. If nodes are ran-
domly connected to other nodes regardless of their labels, then the
expected values of m11 and m10 equal:

m̄11 =

(
n1

2

)
p =

n1(n1 − 1)p

2
(2.4)

m̄10 =

(
n1

1

)(
n0

1

)
p = n1(N − n1)p (2.5)

with p = 2M
(N(N−1)) the connectance, representing the probability

that two nodes are connected. If p = 1, all nodes in the network are
connected to each other. Dyadicity and heterophilicity can then be
defined as:

D =
m11

m̄11
(2.6)

H =
m10

m̄10
(2.7)

A network is dyadic if D > 1, indicating that fraudulent nodes
tend to connect more densely among themselves than expected for
a random configuration. A network is heterophobic (opposite of
heterophilic) if H < 1, meaning that fraudulent nodes have fewer
connections to legitimate nodes than expected at random (Park
and Barabási, 2007). The network represented in Figure 2.12 is
dyadic and heterophobic. If a network is dyadic and heterophobic, it
exhibits homophily; a network that is anti-dyadic and heterophilic, is
inverse-homophilic.

A network that exhibits evidence of homophily, is worthwhile to
investigate more thoroughly. For each instance of interest, we extract
features that characterize the instance based on its relational struc-
ture.
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Figure 2.13: Illustration of the degree distribution for a real-life network of
social security fraud. The degree distribution follows a power law (log-log
axes).

2.3 Overview of the featurization process

In this section, we will discuss the main metrics to measure the impact
of the social environment on the nodes of interest. In general, we
distinguish between three types of analysis techniques:

• Neighborhood metrics

• Centrality metrics

• Collective Inference algorithms

Neighborhood metrics characterize the target of interest based on
its direct associates. The n-order neighborhood around a node con-
sists of the nodes that are n hops apart from that node. Due to
scalability issues, many detection models integrate features derived
from the egonet or first-order neighborhood (see Section 2.1.2). That
is, the node and its immediate contacts. Neighborhood metrics that
are discussed throughout this dissertation are degree, triangles, den-
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Metric Description

Degree Number of connections of a node (in- versus out-degree if the con-
nections are directed).

Triangles Number of fully connected subgraphs consisting of three nodes.

Density The extent to which nodes in a network or subgraph are connected
to each other, and

d =
2M

N(N − 1)
(2.8)

with d the density, M the number of edges and N the number of
nodes in the (sub)graph.

Relational
Neighbor

Relative number of neighbors that belong to class c (e.g., to class
fraud).

P (c|n) =
1

Z

∑
{nj∈Neighborhoodn|class(nj)=c}

w(n, nj) (2.9)

whereby Neighborhoodn represents the neighborhood of node n,
w(i,j) the weight of the connection between n and nj , and Z is a
normalization factor to make sure all probabilities sum up to 1.

Probabilistic
Relational
Neighbor

Probability to belong to class c given the posterior class probabilities
of the neighbors.

P (c|n) =
1

Z

∑
{nj∈Neighborhoodn}

w(n, nj)P (c|nj) (2.10)

whereby Neighborhoodn represents the neighborhood of node n,
w(i,j) the weight of the connection between n and nj , and Z is a
normalization factor to make sure all probabilities sum up to 1.

Table 2.1: Overview of neighborhood metrics.

sity, relational neighbor and probabilistic relational neighbor. The
neighborhood metrics are summarized in Table 2.1.

The degree distribution of a network describes the probability
distribution of the degree in the network. The degree distribution in
real-life networks follows in general a power law. That is, many nodes
are only connected with few other nodes while only few nodes in the
network link to many other nodes. Figure 2.13 gives an example of
the degree distribution (log-log scale) of a real-life fraud network of a
social security institution (Van Vlasselaer et al., under review).

Centrality metrics quantify the importance of an individual in
a social network (Boccaletti et al., 2006). Centrality metrics are
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Metric Description

Geodesic
path

Shortest path between two nodes in the network.

Closeness The average distance of a node to all other nodes in the network
(reciprocal of farness). Given a network with n nodes, the mean
geodesic distance or farness g(vi) from a node i to the other nodes
is computed as follows[

g(vi) =

∑
j=1(j 6=i) d(vi, vj)

n− 1

]−1

. (2.11)

Betweenness Counts the number of times a node or connection lies on the shortest
path between any two nodes in the network. Let gjk be the number
of shortest paths between node j and node k, and gjk(vi) the number
of shortest paths between node j and node k that pass through node
vi, then the betweenness becomes∑

j<k

gjk(vi)

gjk
. (2.12)

Graph theo-
retic center

The node with the smallest maximum distance to all other nodes
in the network .

Table 2.2: Overview of centrality metrics.

typically extracted based on the whole network structure, or a
subgraph. Table 2.2 comprises geodesic paths, betweenness, closeness
and the graph theoretic center. As these metrics lack scalability, they
are not further used in this dissertation.

Given a network with known fraudulent nodes, how can we use this
knowledge to infer a primary fraud probability for all the unlabeled
nodes (i.e., the currently legitimate nodes)? As opposed to neigh-
borhood and centrality metrics, collective inference (CI) algorithms
compute the probability that a node is exposed to fraud and thus the
probability that fraud influences a certain node. In CI, the label of a
node is said to depend on the label of the neighboring nodes. A change
in one node’s label, might cause the labels of the neighboring nodes
to change which might impact the label of their neighbors, and so on.
As a result, long-distance propagation is possible (Hill et al., 2007).
We consider PageRank, and briefly explain Gibbs sampling, iterative
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classification, relaxation labeling, and loopy belief propagation.

2.3.1 PageRank

The PageRank algorithm was introduced by Page and Brin in 1999
and is the basis of Google’s famous search engine algorithm for rank-
ing web pages (Page et al., 1998). The PageRank algorithm tries to
simulate surfing behavior. Specifically, the main idea is that impor-
tant web pages (i.e., web pages that appear at the top of the search
results) have many incoming links from other (important) web pages.
The ranking of a web page depends on (a) the ranking of web pages
pointing towards that web page, and (b) the out-degree of the link-
ing web pages. However, visiting web pages by following a random
link on the current web page is not a realistic assumption. Surfers’
behavior is more random: instead of following one of the links on a
web page, they might randomly visit another web page. Therefore,
the PageRank algorithm includes the random surfer model which as-
sumes that surfers often get bored, and randomly jump to another
web page. With a probability of α the surfer will follow a link on the
web page s/he is currently visiting. However, with a probability 1−α,
the surfer visits a random other web page. The PageRank algorithm
is expressed as follows:

PR(A) = α
∑
i∈NA

PR(i)

dout,i
+ (1− α) · eA (2.13)

with PR(i) the ranking of web page i, Dout,i the out-degree of web
page i, (1 − α) the restart probability, and eA the restart value for
web page A which is often uniformly distributed among all web
pages. This equation requires the ranking of the neighboring web
pages. One option is to start with a random page rank value for
every web page and iteratively update the page rank scores until a
predefined number of iterations is reached or a stopping criterion is
met (e.g., when the change in the ranking is marginal).

In Chapter 3, we start from Equation 2.13 to develop a propa-
gation algorithm that captures the extent to which fraud influences
through the network. For each node of the network, we derive an
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exposure score, which tells how much the node is exposed to fraud.

2.3.2 Gibbs Sampling

Gibbs sampling (Geman and Geman, 1984) is a collective inference
procedure that uses a local classifier to infer a posterior class prob-
ability in order to initialize the node labels in the network. More
concretely, the original semi-labeled graph is transformed in a (fully)
labeled graph by sampling the posterior probabilities of the local
classifier. The predictive features of a local classifier consist of non
network-based variables. An iterative procedure continually updates
the expected class labels of the unknown nodes. The first iterb steps
of the procedure approach a stationary distribution. This is the so-
called burn-in period, were no statistics are recorded. During the last
iterc steps, the algorithm keeps track of which class labels are assigned
to each node. The final class probability estimate is computed as the
normalized count of the number of times each class is assigned to a
particular node.

2.3.3 Iterative Classification Algorithm

Like Gibbs sampling, the iterative classification algorithm (ICA) ini-
tializes the semi-labeled graph by using a local classifier (Lu and
Getoor, 2003). Based on the local model’s output, the most probable
class label is assigned to each unknown node. This is the bootstrap
phase. During the iteration phase, a relational learner updates the
class labels of each unknown node based on the outcome of a rela-
tional logistic regression model. The input features are computed
as link statistics of the current label assignments. Link statistics
include e.g., mode (most occurring label of the neighboring nodes),
count (number of neighboring fraud nodes), binary (at least one of
the neighboring nodes are fraudulent). Nodes that are not yet classi-
fied are ignored. A new class label is assigned to each unknown node
based on the largest posterior probability. This step is repeated until
a stopping criterion is met. The final class label corresponds to the
class label estimate generated during the last iteration.



Fraud! A Social Network Approach 41

2.3.4 Relaxation labeling

Relaxation labeling starts from a local classifier to initialize a node’s
class label. Previous approaches assigned a hard label (i.e., either
legitimate or fraud) to each node. Relaxation labeling starts with
assigning to each node a probability that indicates the likelihood of
a node to belong to a certain class. This is soft labeling. Next,
the probability class labels are used to iteratively update the class
probability using a relational model. The class estimates of the last
iteration are the final class label estimates.

2.3.5 Loopy belief propagation

Loopy belief propagation is a collective inference procedure based on
iterative message passing (Pearl, 1986; Yedidia et al., 2003). The main
idea is that the belief of each node to be in state x (let’s say fraud)
depends on the messages it receives from its neighbors. The belief
of a node to be in state x is the normalized product of the received
messages. The message as well as the belief is continuously updated
during the algorithm.

2.4 Conclusion

This chapter is an introductory chapter to familiarize the reader with
network analysis, and the opportunities it might open up. We dis-
cussed the main components of a network, as well as the different
representation possibilities. We elaborate on how a network can be
represented for (a) visualization purposes, especially in the pre- and
post-processing phase of model development, and (b) in a mathemati-
cally interesting manner in order to derive useful statistics and mean-
ingful features from the network in a scalable way. In addition, we
contrast the various options to decide upon the weight of edges which
are able to quantify the intensity of relationships. The concept ho-
mophily is introduced, being a measure to express the extent to which
nearby social neighbors are alike. In this chapter, homophily is mainly
approached from a fraud perspective, so to serve as a primary indi-
cation whether a fraud detection model might benefit from network
analysis. This chapter is concluded by entering into the featurization
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process. The featurization process defines how unstructured network
information can be mapped into a set of structured features. We dis-
cussed neighborhood and centrality metrics, and briefly introduced
collective inference algorithms.



Chapter 3

Gotcha! A
network-driven approach
for fraud detection

In this chapter, we study the impact of network information for so-
cial security fraud detection. In a social security system, companies
have to pay taxes to the government. This study aims to identify
those companies that intentionally go bankrupt in order to avoid con-
tributing their taxes. We link companies to each other through their
shared resources, as some resources are the instigators of fraud. We
introduce Gotcha!, a new approach on how to define and extract
features from a time-weighted network, and how to exploit and in-
tegrate network-based and intrinsic features in fraud detection. The
Gotcha! propagation algorithm diffuses fraud through the network,
labeling the unknown and anticipating future fraud whilst simultane-
ously decaying the importance of past fraud. We find that domain-
driven network variables have a significant impact on detecting past
and future frauds, and improve the baseline by detecting up to 55%
additional fraudsters over time.

3.1 Introduction

Fraud detection is a research domain with a wide variety of different
applications and different requirements, including credit card fraud

43
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(Chan and Stolfo, 1998; Quah and Sriganesh, 2008; Sánchez et al.,
2009), call record fraud (Fawcett and Provost, 1997), money launder-
ing (Gao and Ye, 2007; Jensen, 1997), insurance fraud (Dionne et al.,
2009; Furlan and Bajec, 2008; Phua et al., 2004) and telecommuni-
cations fraud (Hilas and Sahalos, 2005; Estévez et al., 2006). The
aforementioned problems generally exhibit the same characteristics,
but the solution to each problem is rather domain-specific (Chan-
dola et al., 2009). Data mining techniques – i.e., finding patterns
and anomalies in large amounts of data – have already proven useful
in risk evaluation (Baesens et al., 2003a,b), but fraud is an atypical
example and requires built-in domain knowledge.

We introduce Gotcha!, a new, generic, scalable and integrated
approach on how (social) network analytics can improve the perfor-
mance of traditional fraud detection tools in a social security context.
We identify five challenges that concur with fraud. That is, fraud
is an uncommon, well-considered, time-evolving, carefully organized
and imperceptibly concealed crime that appears in many different
types and forms. Whereas current research fails to integrate all these
dimensions into one encompassing approach, Gotcha! is the first to
address each of these challenges together in one high-performance,
time-dependent detection technique.

In short, Gotcha! contributes to the fraud detection domain
by proposing a novel approach on how to spread fraud through
a (i) time-weighted network and features extracted from a (ii)
bipartite graph (cfr. infra). We exploit dynamic network-based
features derived from the direct neighborhood, and develop a new
propagation algorithm that infers an initial exposure score for
each node using the whole network. The exposure score measures
the extent to which a node is influenced by fraudulent nodes.
We integrate both intrinsic and network-based features into one
scalable algorithm. We argue that fraud is a time-dependent phe-
nomenon, and as a consequence Gotcha! is designed such that
a subject’s characteristics and fraud probability can change over time.

We test the validity of our approach on a real data set obtained
from the Belgian social security institution, which registers and moni-
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Side Company 3 Side Company 2

Side Company 5 Side Company 6

Side Company 4 Side Company 1Key Company

Figure 3.1: Example of a spider construction. Company 1 and 4 are fraud-
ulent. Resources are transferred towards other companies (solid line). The
key company organizes the fraudulent setup, but its links to other companies
are hidden (dashed line).

tors every active company in Belgium and keeps track of all resources,
and their associations with companies.1 In a social security system,
companies have to pay employer and employee contributions to the
government. Fraud occurs when companies intentionally go bankrupt
in order to avoid paying these taxes. A new/existing company with
(partly) the same structure is founded afterwards and continues the
activities of the former company. We can compare the structures of
companies through their resources.

A spider construction is a fraudulent setup with an active
exchange of resources between the companies, i.e., fraudulent
companies do not transfer all of their resources to only one other
company as this might attract too much attention (see Figure ??).
They rather distribute their resources among many companies.
Active companies that inherit resources from fraudulent companies,
exhibit a high risk of perpetrating fraud themselves. In particular,
we distinguish between the key and side companies. The side

1Due to confidentiality issues, we will not elaborate further upon the exact type
of resources, but the reader can understand shared resources in terms of the same
address, equipment, buyers, suppliers, employees, etc.
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Figure 3.2: Bipartite graph of a spider construction. Companies are indi-
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companies are the perpetrators of the fraud and have an observ-
able link to each other through shared resources. The core of a
spider construction is the key company, which is responsible for
organizing the fraud, setting up many side companies and pruning
away their profits, so that they go bankrupt. However, the key
company has unobservable links, and therefore we can only detect
the side companies. The main goal of GOTCHA! is to exploit the
associations between companies and their resources to infer which
companies have a high risk to commit fraud in the future. We believe
that network-based knowledge might strongly improve the standard
approaches, which only use intrinsic variables in the detection models.

In order to assess the added value of our approach, we compare
Gotcha! to three baselines: (1) an intrinsic model, only including
intrinsic features; (2) a unipartite model, linking companies directly
together by means of the resources they shared or transferred among
each other; (3) a bipartite model, which starts from the same network
representation as our proposed approach, integrating both companies
and resources (see Figure 3.2). Yet, the model is not time-weighted.
Our results show that an optimal mix between intrinsic and time-
weighted network-based attributes contribute to a higher accuracy
and more precise output than the baselines. Moreover, it appears
that many regular (i.e., non-intentional) bankruptcy companies are
also outputted and classified as high risk. This is a strong indication
that the developed approach is also able to find those companies that
committed fraud, but were not caught in the past. As a result, we
argue that our approach is suitable for both future and retrospective
fraud detection.

This chapter is organized as follows: Section 3.2 motivates
Gotcha!’s fraud detection process and framework, as well as
Gotcha!’s contributions to existing research. Section 3.3 focuses on
how network analysis is implemented for fraud detection. This section
also discusses Gotcha!’s propagation algorithm and how domain-
driven networked features are defined and extracted from the network.
Section 3.4 summarizes the modeling approach. Section 3.5 contains
the results of Gotcha! on social security fraud data. Section 3.6
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Figure 3.3: Overview of the total number of active companies (blue curve)
and fraudulent companies (red curve). The number of active companies
is consistently growing. A similar trend can be noticed in the number of
fraudulent companies.

concludes this chapter.

3.2 Social Security Fraud Detection

3.2.1 Background

The Belgian Social Security Institution is a federal agency that moni-
tors the tax contributions of every active company in Belgium. These
contributions are used to fund the various branches in social security,
such as family allowance funds, unemployment funds, health insur-
ance, holiday funds, etc. Figure 3.3 gives an overview of the total
number of active companies across the different years of analysis.2

Companies – or in general terms, the employers – need to pay

2Due to a non-disclosure agreement, we do not specify the exact time stamp.
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Suspension

Regular 
Suspension

Bankruptcy

Regular 
Bankruptcy

Fraudulent 
Bankruptcy

(1)

(2) (3)

Figure 3.4: Overview of the different stages a company can go through when
ending its economic lifecycle. Even though it is hard to detect fraud ex ante,
it is also a challenging task to define fraud ex post. Bankruptcy corresponds
to the disability of paying back debts to the social security institution. It is
not straightforward which companies are evidence of regular economic failure
and which companies went bankrupt due to some fraudulent structure.

employer and employee contributions to the government. This means
that all payments are deducted by the company and passed on to
the government. It is the employer’s responsibility rather than that
of the employee to fulfill the social contributions. Some companies,
nevertheless, fail to redeem their obligations and file for bankruptcy.
Recently, experts found evidence of fraudulent setups through
bankruptcy. We say that if a company intentionally goes bank-
rupt so as not to pay its tax contributions, the company is fraudulent.

Although it is easy to formulate a definition for fraud, there are
two main issues the social security institution is facing: ex post and
ex ante fraud detection. First, it is not an obvious task to identify
suspicious companies ex ante, or before the actual crime has been
committed. Experts can closely follow up companies with a high risk
of not paying off their taxes. As most of the controlling services oper-
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ate manually, it is a challenging task to process the massive amounts
of data and identify the anomalies. Using their field experience, ex-
perts almost never classify cases wrong. On the other hand, each
year only a small part of all companies can be investigated by the
experts, leaving a lot of future fraudulent companies unnoticed. Sec-
ondly, all fraudulent companies detected by subject matter experts
are currently identified ex post. This means that the companies are
already bankrupt with unrecoverable debts to the government. In
general, there are three scenarios when a company decides to stop
its activities: (1) regular suspension, (2) regular bankruptcy and (3)
fraudulent bankruptcy. This is depicted in Figure 3.4. More specif-
ically, a company is regularly suspended when it stops it economical
activities and all remaining transactions are finalized. There are no
outstanding debts. A company that is categorized as suspended by
regular bankruptcy, however, did not succeed to pay back to all its
creditors. When we say that a company ended its lifecycle by fraudu-
lent bankruptcy, the company intentionally did not redeem its debts.
It is this last category that is the subject of our fraud detection ap-
proach. Remark that it is especially hard to discriminate between
regular and fraudulent bankruptcies, even for subject matter experts.
Subject matter experts investigate suspicious bankruptcies and la-
bel them fraudulent as soon as they detect some abnormal activities.
While those experts can accurately classify a bankruptcy as fraud-
ulent or not, many fraudulent bankruptcies are not detected as the
number of bankruptcies to investigate is too large. Experts require
thus a detection tool that guides them towards potential high-risk
companies.

Spider Constructions

We defined fraud as the intentional failure of a company to redeem its
tax contributions. In real data, we observe small and dense “webs of
fraud”, the so-called spider constructions. In addition to transparent
forms of fraud – like systematically neglecting the legal registration
of employees, a spider construction is a more complex type of tax
evasion, involving many companies and people, and it is not obvi-
ous for human analysts to detect. Stating that fraud is rather a so-
cial than an individual phenomenon, communicated and encouraged
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by the presence of other individuals who also wish to commit fraud
(Neville et al., 2005), such theoretical constructions confirm the effect
of social interactions in fraud. More concretely, a spider construction
consists of (fraudulent) companies that are closely connected to each
other through shared or transferred resources. Resources include ad-
dress, equipment, buyers, suppliers, employees, etc.3 For example,
two companies are associated with each other because they operate
at the same location. The data reveals which resource is associated
with which company for which specific time period. We observe that
the profits of companies that belong to a fraudulent setup are often
pruned away by a hidden key company (see Figure 3.1). Consequently,
the company becomes insolvent and files for bankruptcy, leaving the
government with unrecoverable debt claims. We see, however, that
their operational resources move towards other currently legitimate or
newly founded companies, e.g., 80% of the resources of the fraudulent
company are re-used by a new or currently legitimate company. Those
companies will continue the activities of the fraudulent company. The
transfer (or sharing) of such resources induces the observable struc-
ture of spider constructions. Companies that inherit (many) resources
of fraudulent companies, exhibit a high risk of perpetrating fraud in
the future as well. Figure 3.2 shows how (groups of) resources are
exchanged between various companies, transferring fraudulent knowl-
edge on how to commit fraud (Levin and Cross, 2004) towards legiti-
mate companies. We must note that resource sharing is nevertheless
a normal activity in the corporate environment, complicating the de-
tection process. Although the exact procedure of resource sharing is
confidential, the reader can think in terms of e.g., the transfer or shar-
ing of employees, equipment, buyers/suppliers, and addresses taken
over by other employers, etc.

Governmental authorities do not have the necessary information
to link the key company to its side companies, or even to identify the
key company in each spider construction. We focus on the detection
of the side companies. Nevertheless, the role of side companies is
crucial in levying social security taxes. They are often found for a
short term, first operating in a regular way, but by the time they have

3Due to a non-disclosure agreement, we cannot provide detailed information
about the resources.
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to pay taxes, they intentionally go bankrupt, leaving a large debt to
the social security institution.

The requirements of fraud experts are threefold: (1) curtailing
the growth of existing spider constructions; (2) preventing the de-
velopment of new spider constructions; and (3) detecting uncaught
spider constructions, i.e., dense subgraphs in the network with many
bankruptcies. In this chapter, we focus on requirement (1) and (2).
Recall that we do not have information to associate key companies
to their side companies. Therefore, we aim to find suspicious side
companies.

3.2.2 Challenges

A first contribution of this research is the investigation and iden-
tification of the underlying reasons why fraud detection cannot
be resolved by applying standard data analytics. We identify five
challenges present in most fraud detection problems, and discuss how
each challenge can be addressed. In general, the main challenges that
characterize fraud are as follows:

Definition 3.1. Fraud is an uncommon, well-considered, time-
evolving, carefully organized and imperceptibly concealed crime which
appears in many different types and forms.

I. Uncommon Fraud detection techniques must deal with extremely
skewed class distributions. Subject matter experts are often
only able to identify a limited number of confirmed fraud cases.
Rather than using unsupervised techniques, how can we use
and learn from (sparsely) labeled data? Resampling techniques
(Provost, 2000; Chawla et al., 2011) are able to emphasize fraud
and rebalance the data set.

Figure 3.3 depicts the number of active companies over 8
years (blue curve) and the percentage of fraudulent companies
over the same time period (red curve) for the social security
institution in our study.4 Each year, approximately 230K
companies are active with a fraud ratio between 0.09% and

4Due to confidentiality issues, the exact date of each timestamp is omitted.
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(a) (b) (c)

Figure 3.5: Real-life example of fraud propagating through a sub-network
over time. Legitimate companies are unfilled, fraudulent companies are filled.
The initial situation is represented in (a). When time passes, more nodes are
influenced by fraudulent behavior of their neighbors (b), ultimately infecting
almost the whole subgraph (c). This confirms the contagious effect of fraud.

0.18%, except for year t−4.5 For reasons of stability, Gotcha!
is applied to year t0 − t3.

II. Well-considered Complex fraud structures are carefully
planned and well thought through. Fraud is present in all
attributes. Labeling instances based on a single action (e.g.,
outlier detection) is often inaccurate and insufficient. We
believe that integrating intrinsic and domain-driven network
attributes helps to improve model performance.

III. Time-evolving Fraud evolves over time. Fraudsters learn from
the mistakes of their predecessors and are highly adaptive
(Jensen, 1997). Models should be built for a varying temporal
granularity, weighing information based on its recency (Rossi
and Neville, 2012). We estimate models for different times-
tamps, resulting in a time-dependent fraud probability.

IV. Carefully organized Fraudsters often do not operate by
themselves, but are influenced by close allies and influence

5During year t−4 a fraud detection team was assigned and experts effectively
started to report fraud. The peak in fraud detection is mainly due to catching up
the piling backlog of old fraud cases and entering them in the system.
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others in turn. They transfer knowledge on how to commit
fraud without being detected. This is homophily. Homophily
states that instances that are closely related to each other are
likely to behave in the same way (Aral et al., 2009; Bapna
and Umyarov, 2012). A feasibility study (Park and Barabási,
2007; Easley and Kleinberg, 2010) on the social security data
set indicates that fraudulent companies are indeed significantly
more connected to other fraudulent companies (p-value ≤ 0.02
for t0 − t3 using a one-tailed proportion test, see Section 2.2).

V. Imperceptibly concealed Maes et al. (2002) formulated this as
the presence of overlapping data. Fraudulent companies often
have the same characteristics as legitimate companies. In the
fraud detection domain, there is a need for extracting additional,
meaningful features that uncover hidden behavior. We focus on
influence. Influence is subtle and often subliminal. This chal-
lenge encompasses how to capture unobservable, subtle fraudu-
lent influences from the external environment. We address this
challenge by means of collective inference procedures, like net-
work propagation techniques, to diffuse a small amount of fraud-
ulent behavior through the network and infer a fraud exposure
score for every node in the network.

Figure 3.5 illustrates how fraud spreads through a network over
time, much like a virus. The closer the nodes are located to
the region of a fraudulent source, the higher the probability of
copying the fraudulent behavior. This phenomenon is known as
the propagation effect (Prakash et al., 2010).

Sections 3.3, 3.4 and 3.5 of this chapter explain in more detail how
we address each of these challenges. In particular, Section 3.3.3 de-
scribes how we infer an initial exposure score for every company, and
consequently label the unknown resources based on fraudulent influ-
ences from the whole network (Challenge V ). In Section 3.3.4, each
company is then featurized based on its direct resources (Challenge
IV ). Section 3.4 discusses how we integrate intrinsic and network-
based features (Challenge II ) and resample the data set using SMOTE
(Chawla et al., 2011) (Challenge I ). The proposed fraud detection
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# Reference Fraud type
Challenges

I II III IV V

1 (Goldberg and Senator, 1995) money laundering X

2 (Jensen, 1997) money laundering X

3 (Cortes et al., 2001) telecom fraud X X

4 (Chen et al., 2004b) insurance fraud X

5 (Galloway and Simoff, 2006) law enforcement fraud X

6 (Neville et al., 2005) security fraud X X X

7 (Fast et al., 2007) security fraud X X X

8 (Wang and Chiu, 2008) online auction fraud X X

9 (Akoglu et al., 2010) various X

10 (Yanchun et al., 2011) online auction fraud X

11 (Chiu et al., 2011) online auction fraud X

12 (Chau et al., 2006) online auction fraud X X X

13 (Pandit et al., 2007) online auction fraud X X X

14 (Gallagher et al., 2008) various X X

15 (McGlohon et al., 2009) accounting fraud X X

16 (Šubelj et al., 2011) insurance fraud X X X

17 (Akoglu et al., 2013) opinion fraud X X

18 Gotcha! social security fraud X X X X X

Table 3.1: Overview of all published papers related to fraud detection using
network analytics.

technique estimates time-weighted features and a time-dependent
fraud probability for every company (Challenge III ), which is ex-
plained in Section 3.5.

3.2.3 Related Work

Although fraud detection algorithms are frequently discussed in the
literature, only few research studies acknowledge the importance of
network analytics in fraud detection. To the best of our knowledge,
Table 3.1 gives an overview of all published papers related to fraud
detection using network analytics. The table evaluates each paper
according to the identified challenges in Section 3.2.2. All papers
comply with Challenge IV, i.e., including network analysis in the de-
tection process.

Methods 1-5 focus on one type of network feature to measure or
visualize fraud and rely to a larger extent on human interaction for
effectively guiding the fraud detection process. Gotcha! is designed
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Figure 3.6: Fraud detection process for the social security institution.

such that it derives multiple network-based features in order to judge
the fraudulence of other instances. Methods 6-10 are more advanced;
they analyze and combine multiple aspects of the direct neighborhood
to decide whether a node in the network is fraudulent or not. Collec-
tive inference procedures for fraud detection are discussed in methods
11-17. Rather than only taking into account the direct neighborhood,
Gotcha! implicitly uses the indirect neighborhood to infer a label
for the unknown nodes, both anticipating future fraud and forgiving
past associations.

Except for Šubelj et al. (2011) and Chau et al. (2006), all fraud
detection papers exclusively use network variables to detect fraud,
neglecting instance-specific information. Although we believe that
the network effects play an important role in accurately identifying
fraud, individual instance behavioral information often also contains
subtle signs of new types of fraud and should therefore not be disre-
garded and considered as a valuable indicator in the fraud detection
process. Our study differs from the work of Šubelj et al. (2011) and
Chau et al. (2006) as they use intrinsic features only to bootstrap the
network learning algorithms. In order to develop a comprehensible
and usable technique for experts, we extend the intrinsic features
with domain-driven network features. As such, we offer experts the
opportunity to gain insights about the importance of each of the
variables in the fraud detection process. Given that current research
does not offer an encompassing approach, we developed Gotcha!.
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3.2.4 Proposed Fraud Detection Process

In order to make the Gotcha! approach useable, it needs to be em-
bedded in the global context of the fraud detection process. The goal
of social security fraud detection is to define which companies are
likely to commit fraud within a certain period of time. Currently, so-
cial security experts have mainly focused on manually inspecting ran-
dom companies and determining whether they are involved in fraud
or not. This section discusses how we propose to extend the current
process. The fraud detection process is illustrated in Figure 3.6.

Fraud detection is the automated process of identifying high-risk
instances. For reasons of generality, we use the term Automated De-
tection Algorithms to refer to any technique that is able to estimate a
fraud detection model, such as tree models, linear or logistic functions,
SVMs, ANNs, Bayesian learning, ensemble models, etc. (Hastie et al.,
2001; Carrizosa et al., 2014). During fraud investigation, experts de-
cide to agree or disagree with the high-risk companies identified by the
model using their practical insights and knowledge. Note that, cur-
rently, experts are not guided as to which companies are potentially
high-risk. This makes the fraud investigation process inefficient and
time-consuming. The high-risk companies are passed on to the field
auditors who finally confirm if their expectations are correct (fraud
confirmation).

Observe the interactive nature of such a system: while experts feed
the fraud detection algorithms with confirmed fraud, our algorithm
guides the experts in turn where to look for fraud. In the end, the
ultimate goal is to evolve towards fraud prevention, i.e., the ability of
detecting fraud before it is even committed (Bolton and Hand, 2002).

This chapter studies the fraud detection phase by proposing
Gotcha!. The next section will discuss the fraud detection process in
more detail. We expect that our process is more efficient and system-
atic than experts merely following their own intuition. Our estimated
models give a good indicator which companies are likely to commit
fraud (see Section 3.5).
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Figure 3.7: Proposed Gotcha! framework for social security fraud detec-
tion.

3.2.5 Gotcha!’s Fraud Detection Framework

Figure 3.7 illustrates in greater detail our proposed framework
for the fraud detection phase (see Figure 3.6) in a social security
context. We start from three data sources. A factual data source
contains company-specific information such as regional, sectorial and
legal characteristics of each company. Historical data log changes
in company information, e.g., when a company changes its legal
seat. Transactional data record which resources are associated to
which companies, including the time period. Those data sources
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Figure 3.8: Example of a preprocessed data set.

are transformed into relevant company-specific and network-centric
attributes. Transactional data form the basis to create the global
network structure representing the relationships between companies
and resources as a bipartite graph (Section 3.3.2). As historical
relationships between companies and resources contain important in-
formation, we use the historical data sources to reconstruct historical
links and add them to the network, weighing the links based on their
recency. While the past and the present is explicitly implemented in
such a network, future behavior can be estimated by exploiting both
direct effects as well as collectively inferring fraud through the whole
network (Section 3.3.3). Approximately 350K active and non-active
companies and 5 million resources are considered in the network.

According to Verbeke (2012), variables can be classified into two
categories:

Definition 3.2. A local or intrinsic variable represents intrinsic
information of a company as if it was treated in isolation. Those vari-
ables include regional, sectorial, historical and legal characteristics.

Definition 3.3. A network variable aggregates information that
is contained by the neighborhood of each company. We assume that
behavior of a company’s neighbors has an influence on the company
itself. Those variables include the degree, triangles and propagated
exposure score (see Section 3.3.4 for details), and can be classified as
direct and indirect network variables depending on whether they are
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(a) (b)

Figure 3.9: Overview of a unipartite (a) and a bipartite (b) graph.

derived from the direct neighborhood or take into account the full
network structure.

Figure 3.8 gives an example of the preprocessed data, and features
of each category. We derive regional, sectorial and legal variables from
the factual data source; the historical features are extracted from the
historical data. The transactional data source is the basis for the
creation of the network variables and specifies which resources are
assigned to which companies for which time period (see Section 3.3).

In the remainder of this chapter, we will use the terms intrinsic
and network variables to indicate whether the variables are gener-
ated by instance-specific or network-centric information. The data
preprocessing phase derives intrinsic, direct and indirect network
attributes. Rather than using plain relational classifiers as proposed
by (Macskassy and Provost, 2007) to predict fraud, the network data
set imposes a mix of intrinsic and domain-driven network attributes.
A learning algorithm will then estimate the corresponding models
(Section 3.4). Those models are used to evaluate fraudulent behavior
of companies (Section 3.5).

3.3 Network Analytics for Fraud Detection

3.3.1 General Concepts and Notations

Our proposed approach is based on fundamentals from graph theory,
incorporating Challenge IV of Section 3.2.2. Boccaletti et al. (2006)
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define graph theory as the natural framework for the exact mathemat-
ical treatment of complex networks. Formally, a complex network can
be represented as a graph. A graph consists of a set of vertices v ∈ V
and edges e ∈ E . Vertices – also referred to as nodes or points – are
connected by edges – also known as links or lines. A standard graph
can thus mathematically be represented as G(V, E), and is shown in
Figure 3.9a. A graph can be either directed or undirected, depending
on the direction imposed on the edges. When edges define the capac-
ity or the intensity of a connection (Boccaletti et al., 2006), the graph
is said to be weighted. Mathematically, a graph is represented as a
matrix. The adjacency matrix An×n = (ai,j) is the corresponding
matrix representation of size n× n of a graph, with n being the total
number of vertices and ai,j = 1 if a link between node i and j exists,
and ai,j = 0 otherwise. The weight matrix Wn×n = (wi,j) captures
the link weight of the relationships between the nodes.

Most networks contain only one node type. Certain applications,
however, require implementing a second entity. Such networks are
bipartite graphs, as shown in Figure 3.9b. In contrast to unipartite
graphs, a bipartite graph G(V1,V2, E) consists of two types of vertices
v1 ∈ V1 and v2 ∈ V2. An edge e ∈ E exclusively connects objects from
different classes to each other. For each edge in a bipartite graph, the
following property holds:

e(v1, v2) ∈ E|v1 ∈ V1 and v2 ∈ V2 (3.1)

This property enforces that two instances of the same class are
never directly connected, but always connect through an object of the
other class. The adjacency matrix of an undirected bipartite graph
is formally written as An×m = (ai,j), with ai,j = 1 if a link between
node i ∈ V1 and node j ∈ V2 exists, and ai,j = 0 otherwise. The
corresponding adjacency matrix has a size of n×m, with n and m the
number of objects in set V1 and V2 respectively. The weight matrix
is Wn×m = (wi,j).

3.3.2 Time-weighted Bipartite Networks

Reality is often difficult to capture in mathematical formulations or
even a graphical representation. Network analysts, in consideration
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Figure 3.10: Exponentially weighting the recency of the relationships be-
tween companies and resources to determine the tie strength using different
values of γ.

with field experts, should carefully choose and agree upon the right
design of the network, reflecting the reality in the best possible way. It
is particularly important to bridge the richness of experts’ knowledge
to the technical limitations of network analytics by selecting the most
relevant data features for the analysis.

We argued in Section 3.1 that in a social security fraud detection
problem companies are related to their resources. The goal of fraud
detection is to find high-risk companies, but the resources are an im-
portant indicator as they help in executing the company’s (fraudu-
lent) activities. Resources are transferred from company to company.
If a currently legitimate company inherits resources from a fraudulent
company, this substantially increases the fraud risk of that company.
Hence, we create a bipartite graph (or bigraph) connecting compa-
nies to their past and present resources. We work with undirected
networks as fraud can pass from a company to a resource, and vice
versa.

For computational reasons, the graphical representation is mapped
into a weight matrix W with size c×r, where c and r specify the num-
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ber of companies and resources respectively. The strength of the re-
lationship between a company and resource is exponentially weighted
in time:{
wi,j = e−γh if a relationship exists between company i and resource j

wi,j = 0 otherwise

with γ the decay constant6, and h the time passed since the resource
was linked to the company, with h = 0 representing a current re-
lationship. The value of the decay constant γ indicates the rate at
which past information declines, and is chosen (by mutual agreement
with the experts) such that only limited past information is taken
into account. Particularly, if experts say that the associations can
be considered as irrelevant after x days, then we choose γ such that
the decay function goes to zero for time values greater than x, i.e.,
f(t > x) ≈ 0. For example, if one decides that information of only 5
years back should be taken into account, then γ ≈ 1. This is depicted
in Figure 3.10.

The matrix W is time-dependent. To incorporate the time-
evolving characteristics of fraud (cfr. Challenge III in Section 3.2.2),
we create a matrix W t for each timestamp t ∈ {t0, t1, t2, t3}, repre-
senting the interrelated structure at time t. The social security bi-
graph contains approximately 350K active and non-active companies
and 5 million active and non-active resources in every timestamp of
analysis. In each timestamp, the network density is around 4.5×10−6.

3.3.3 Gotcha!’s Fraud Propagation Algorithm: Defin-
ing high-risk nodes in the network

This section handles Challenge V (see Section 3.2.2). In particular,
we answer the following questions: (1) Which resources are often in-
volved in fraud and exhibit a high risk to entice other companies to
perpetrate fraud as well? (2) Which companies are sensitive to fraud?
More specifically, we need a score that indicates which resources are
coincidentally associated with fraudulent companies (low-risk) and
which resources systematically pop up when fraud is detected (high-
risk). For example, assume an address that was previously used by a

6Due to confidentiality issues, we will not elaborate on the exact value of γ.
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Figure 3.11: Overview of propagation task. Only a limited number of com-
panies is labeled. Using a propagation algorithm we infer an exposure score
for each company and resource in the network, representing the extent to
which a company/resource is exposed to fraud.

fraudulent company is taken over by another company. What would
you say about the riskiness of that resource? Would the resource risk-
iness change if you knew that the address was already used by many
fraudulent companies previously, or if the address was the location of
only one fraudulent company many years ago? Similarly, we derive a
score that gives a primary indication of how the company is affected
by the fraudulent influences from its neighborhood. Figure 3.11 gives
an overview of the task at hand.

Given a time-weighted bipartite graph of companies and resources,
we want to diffuse or propagate the effect of a limited number of
known fraudulent companies through the network (see Figure 3.12)
and infer an exposure score for every node (i.e., resource and com-
pany) in the network. The exposure score expresses the extent to
which the node is affected by fraud. As only companies are directly
attributed to fraud, we start from the label of the few confirmed
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Figure 3.12: Illustration of Gotcha!’s propagation algorithm. The dark
node in the center propagates its fraudulent influence to its neighbors (step
1) The neighbors absorb the influence and propagate on their turn their
fraudulent influence to their neighbors (step 1 + 2). The iterations are
repeated several times until convergence.

fraudulent companies. The bipartite graph allow to spread fraudulent
influence through the network and define an exposure score for each
company and resource. As such, each company can be analyzed based
on its own exposure score and the links to high- and low-risk resources.

We start from the Personalized PageRank algorithm (Page et al.,
1998), one of the popular applications of the Random Walk with
Restarts (RWR) method (Gleich, 2014; Gyöngyi et al., 2004), and ex-
tend it so that the following domain-specific requirements are fulfilled:

1. Bipartite graphs: fraud contaminates both companies and re-
sources.

2. Focus on fraud : only fraud – and no legitimate effects – propa-
gates through the network.

3. Dynamics: fraud is evaluated upon its recency.

4. Degree-independent propagation: high-degree companies spread
proportionally more fraud than low-degree companies.
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Figure 3.13: The exposure score for each node depends on (a) the expo-
sure scores of the node’s neighborhood (left figure) and (b) a random jump
towards another node in the network (right figure).

In general, the Personalized PageRank algorithm (see Figure 3.12
for an overview) computes an exposure score for each node which
depends on (a) the exposure scores of the node’s neighborhood and
(b) a random jump towards another node in the network. This is
depicted in Figure 3.13. Mathematically, this can be written as,

(~ξ) = α ·A(~ξ) + (1− α) · ~v (3.2)

with (~ξ) a vector containing the exposure scores of the nodes, A
the corresponding column-normalized adjacency matrix, (1 − α) the
restart probability and ~v the restart vector. The restart vector ~v is
uniformly distributed over all nodes, and normalized afterwards.

Solving Equation 3.2 requires a matrix inversion. This is often
not feasible to compute in practice. The most widely used way to
compute the relevance score is by the power iteration method, which
iterates until convergence (Tong et al., 2006). Convergence is reached
until the change is marginal, or after a maximum number of iteration
steps. Next, we discuss how we integrate the fraud-specific domain
requirements into the algorithm.

Requirement 1 Equation 3.2 is developed for unipartite graphs.
We want to assess the extent to which fraud affects both companies
and resources. Starting from the weighted adjacency matrix Wc×r
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of the bipartite graph with c companies and r resources (see Sec-
tion 3.3.2), the matrix is transformed to a unipartite representation,
according to (Tong et al., 2008),

Q =

(
0c×c W
W ′ 0r×r

)
(3.3)

Matrix Q is a symmetric matrix with c + r rows and columns.
Introducing zeros enforces that resources exclusively connect to com-
panies and vice versa. The column-normalized matrix is Qnorm, a
matrix where all columns sum to 1. The iterative propagation proce-
dure for bipartite graphs can then be written as,

(~ξ) = α ·Qnorm(~ξ) + (1− α) · ~v (3.4)

Note that Qnorm is a dynamic matrix, representing both present
and past relationships. All active and non-active companies are
included. This allows us to integrate and exploit all connections
(ever established) among companies and resources. The vectors ~ξ
and ~v are of size c + r, containing the exposure scores and restart
probabilities of the companies and the resources.

Requirement 2 The goal is to focus on fraud and exclusively
propagate fraudulent influence through the network. A similar
approach is taken in Provost et al. (2009) to compute brand affinity,
measuring the proximity of a node to the seed nodes. Seed nodes
are nodes that already are enticed about the product or, in our case,
into fraud. Given information provided by seed nodes, how will
this affect the other currently legitimate companies and resources in
the network? We use the restart vector to personalize the ranking
towards fraud and stress the fraudulent influences of the seed nodes.
The restart vector specifies which nodes (here: companies) committed
fraud, where vj = 1 if entry j is a fraudulent company and vj = 0 if
entry j is a resource or a legitimate company. Although there is a lack
of evidence of confirmed fraud nodes, the algorithm is able to cope
with only few labeled nodes by emphasizing fraud in the restart vector.

Requirement 3 Fraud is dynamic. Recently caught companies
are a more important source of spreading fraud than companies de-
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tected many years ago. The restart vector reflects the fraudulent
influence a certain company can disperse, and should depend on the
recency of the fraud. The more time passed since fraud was detected,
the lower a particular fraudulent company’s influence. Inspired by
the half-time decay of nuclear particles, we exponentially decay the
relevance of fraudulent activities over time,{

vj = e−βh if entry j is a fraudulent company
vj = 0 otherwise

with β the decay constant (see Section 3.3.2 for details), and h
the time passed since the company was detected fraudulent where
h = 0 represents a current fraud company.

Requirement 4 Fraudulent companies infect their surrounding
resources directly. However, low-degree companies have fewer links
through which fraud can propagate and affect the resources more
strongly. High-degree companies have many links, resulting in a
marginal impact on the neighboring nodes. In realistic situations,
this assumption does not hold. The influence of high-degree compa-
nies should be equally treated as low-degree companies, as high-degree
companies have a wider range to influence other companies. Hence,
fraud propagation has to be proportional to a node’s degree, and

~z = ~v � ~d (3.5)

with ~z the degree-adapted restart vector, which is the element-
wise product of the restart vector ~v and the degree vector ~d denoting
the degree of each entry. The normalized vector is ~znorm.

After k + 1 iterations, the exposure score for each company and
resource equals

~ξk+1 = α ·Qnorm · ~ξk + (1− α) · ~znorm (3.6)

with (1 − α) the restart probability7, Qnorm the column-
normalized adjacency matrix, ~znorm the normalized degree-adapted
restart vector, ~ξk a vector containing the exposure scores of all nodes

7based on Page et al. (1998), we choose α = 0.85.
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Figure 3.14: Each resource is associated with its propagated exposure score
and its presence in fraudulent companies. The resources are colored ac-
cording to their riskiness (red indicates high risk, green is low risk). The
horizontal line represents the boundary dividing the resources in a low-risk
and high-risk category. Note that only 0.28% of all resources are labeled as
high-risk.

after k iterations, and ~ξ0 the initial distribution. Note that the
final scores are independent of the initial values of ~ξ0 (Page, 2001).
We repeat the process for 100 iterations in order to make sure that
potential changes in the final exposure score are only marginal.

Apart from a company score, the Gotcha! propagation algorithm
also assigns an exposure score to each resource. Note that the inter-
pretation of the exposure scores of both companies and resources is
the same: it expresses the extent to which the company/resource is
exposed to fraud. Figure 3.14 shows the exposure scores of the re-
sources compared to their presence in fraudulent companies (for year
t0). In general, 87% of the variation in the resources’ exposure score is
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(a) (b) (c)

Figure 3.15: Various egonets for micro- (a), small- (b) and medium-sized (c)
companies. The company is the center (i.e., the ego) of the egonet and is
surrounded by its resources (i.e., the alters). High-risk resources are labeled
in black, low-risk nodes are white-colored. All central companies (egos) are
still active at the time of analysis.

explained by their presence in fraudulent companies. While certain re-
sources were never associated with fraudulent companies before, they
receive a relatively high exposure score. This means that, although
those resources are not directly contaminated by fraudulent activities,
they are surrounded by a huge amount of fraud. We call this the an-
ticipating effect of Gotcha!’s fraud propagation. On the other hand,
some resources have been involved in fraudulent companies, but re-
ceived a low fraud score. Due to the incorporation of the recency of
fraud in the propagation algorithm, there is a forgiving effect present.
When time evolves and resources were not involved in fraud again,
their fraudulent influence decreases and is only marginal.

In agreement with social security fraud experts, Gotcha! con-
siders resources involved in at least two fraudulent companies always
as high-risk. The minimum exposure score of the resource connected
to at least two fraudulent companies is chosen as the cut-off value to
distinguish between low- and high-risk resources. The horizontal line
in Figure 3.14 illustrates this cut-off value. Resources located above
the cut-off line are marked as high-risk. Note that this corresponds
to only 0.28% of all resources.

Having an estimated probability of the riskiness of the resources,
we are now able to characterize each company based on its connectiv-
ity to high- and low-risk resources.
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Feature Description (u) (b) G

DIRECT FEATURES
Neighborhood Degree number of first-order neighbors that are of

high-risk - high-risk X X X
low-risk - low-risk X X X
relative proportion of high-risk neighbors X X X

Time-Weighted Degree time-weighted8 number of first-order neighbors that are of
high-risk - high-risk X
low-risk - low-risk X
relative proportion of high-risk nodes, weighted in time X

Triangles number of closed triples in the neighborhood that contain
high-risk - at least one high-risk node X
low-risk - no high-risk nodes X
relative proportion of triples that contain at least one high-risk node X

Quadrangles number of quadrangles in the extended neighborhood that contain
high-risk - at least one high-risk company node X X

time-weighted - at least one high-risk company node, weighted in time X
low-risk - no high-risk company nodes X X

time-weighted - no high-risk company nodes, weighted in time X
relative proportion of quadrangles that contain at least one high-risk company

node
X X

time-weighted - weighted in time X

Quadrangle Frequency quadrangles in the extended neighborhood that contain the same two
first-order neighbors, and have

mean (high-risk) - at least one high-risk company node, averaged X X
time-weighted - at least one high-risk company node, averaged and weighted

in time
X

max (high-risk) - at least one high-risk company node, maximum X X
time-weighted - at least one high-risk company node, maximum and weighted

in time
X

mean (low-risk) - no high-risk company nodes, averaged X X
time-weighted - no high-risk company nodes, averaged and weighted in time X

max (low-risk) - no high-risk company nodes, maximum X X
time-weighted - no high-risk company nodes, averaged and weighted in time X

Neighborhood Similarity count of similar neighbors X X X

INDIRECT FEATURES
Exposure Score node’s own exposure score X X X

Neighborhood Exposure first-order neighbors’ exposure score
mean - averaged X X X
weighted mean - time-weighted X
maximum - maximum X X X

Table 3.2: Network-based feature extraction for (u) Unipartite, (b) Bipartite,
(G) Gotcha!.
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3.3.4 Network Feature Extraction

Given all legitimate companies at time t, we want to rank those
companies according to their fraud risk – i.e., the probability that
they will commit fraud in the near future. As this risk depends on
a combination of intrinsic and network-based variables, we need to
transform network information to a set of promising network-based
features for each active company (Eliassi-Rad and Henderson,
2011). We infer two types of network-based features: direct and
indirect features. The direct network features are derived from each
company’s direct neighborhood. Given the bipartite structure of
our network, for each company we take into account all nodes that
are one and two hops removed from the center (i.e., a company’s
associated resources and companies). Figure 3.15 illustrates the
direct neighborhood of a company with varying neighborhood size.
The indirect network features are derived from the exposure scores
which use the whole network rather than a node’s neighborhood.
Table 3.2 gives an overview of the features derived from the network.

Our approach Gotcha! is evaluated against three baselines: (1) a
model without network features, (2) a model with unipartite features,
and (3) a model with bipartite features not time-weighted. In (2),
companies are directly linked to each other. The link weight expresses
the number of shared resources between both companies. Here, the
direct features are derived from the first-order neighborhood as this
explicitly comprises the associated companies. In (3), the network has
a bipartite structure, but the links are not weighted in time. For each
company, the unipartite model (2) extracts the following direct fea-
tures: degree, triangles, neighborhood similarity. The degree counts
the number of neighbors. Since the impact of high-risk neighbors is
an important indicator of fraud, we distinguish between the number
of first-order high-risk and low-risk neighbors, and the ratio hereof.
Remark that a node is classified as high-risk if the node is a fraud-
ulent company or if the node has a sufficient large exposure score as
explained in Section 3.3.3. A triangle is defined as three nodes that
are all connected to each other. We say that a triangle has a high-risk

8Time is included in the edge weight.
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if at least one of the associated nodes is classified as high-risk. Neigh-
borhood similarity measures the extent to which the characteristics
of the neighbors are similar to the node of interest. Here, we compare
companies based on location and sector-specific information, guided
by expert expectations.

The indirect features include the company’s own exposure score
and the exposure scores of the first-order neighborhood aggregated by
the mean and maximum. The exposure score is computed according
to Equation 3.2 where the restart vector incorporates fraud (Require-
ment 2). The bipartite model (3) derives the same set of features
as the unipartite model, with the exception of triangles. In our bi-
partite network structure where companies (resources) are exclusively
connected to resources (companies), no triangles exist. However, a
shift of many resources from one company to another might indicate
the existence of a spider construction. Hence, we count the number of
quadrangles – i.e., a closed path of four nodes – in the extended neigh-
borhood where we both include the first- and second-order neighbor-
hood. We say that a quadrangle is of high risk if at least one high-risk
company node is associated with the quadrangle. The quadrangle fre-
quency establishes how many quadrangles are formed for each pair of
resources. As the length of this feature value differs from company
to company, we compute the mean and average amongst all pairs of
resources. The features in Gotcha! differ from those of (3) as they
are time-weighted by the edges. For high-risk degree for example,
this means that we sum the edge weight of the associated high-risk
resources. The value of a weighted quadrangle is determined by the
arithmetic mean of the link weights (Opsahl and Panzarasa, 2009).
We also derive the weighted mean of the first-order neighbors’ expo-
sure scores, weighing the impact of each node’s exposure score by the
edge weight.

We construct the features for each timestamp t ∈ {t0, t1, t2, t3} and
hence take into account the time-evolving property of fraud. Together
with the intrinsic features, these network-based features are fed into
a learning algorithm. An overview of the features’ summary statistics
for year t3 can be found in Table 3.3.
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Summary Statistics
Feature Fraud Non-Fraud

µ σ µ σ

DIRECT FEATURES
Neighborhood Degree

high-risk 31.37 39.09 13.13 48.12
low-risk 2.00 8.43 5.55 18.44
relative 0.91 0.23 0.55 0.39

Time-Weighted Degree
high-risk 19.15 22.01 6.70 17.86
low-risk 0.56 4.10 2.64 7.20
relative 0.93 0.23 0.56 0.45

Quadrangles
high-risk 56.71 198.83 0.62 37.04

time-weighted 45.34 155.41 0.17 13.16
low-risk 131.30 294.40 375 108729.60

time-weighted 55.88 162.35 134 36197.67
relative 0.19 0.32 0.0040 0.0048

time-weighted 0.23 0.36 0.0036 0.0046

Quadrangle Frequency
mean (high-risk) 0.64 0.87 0.03 0.23

time-weighted 0.28 0.40 0.0075 0.0641
max (high-risk) 1.52 2.46 0.0398 0.3328

time-weighted 0.62 0.98 0.0104 0.0956
mean (low-risk) 0.89 0.57 0.45 0.56

time-weighted 0.47 0.38 0.19 0.27
max (low-risk) 1.75 1.59 0.64 1.22

time-weighted 0.95 0.85 0.31 0.50

Neighborhood Similarity
Sector 0.60 0.49 0.73 0.45
Location I 0.55 0.50 0.45 0.50
Location II 0.01 0.11 0.01 0.12

INDIRECT FEATURES
Exposure Score 0.0027 0.0046 3.565e-5 2.569e-4

Neighborhood Exposure
mean 0.0106 0.01756 3.381e-4 2.024e-3
weighted mean 8.49e-3 0.0156 1.93e-4 1.668e-3
maximum 0.0353 0.0467 0.0028 0.0119

Table 3.3: Network-based feature extraction.
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3.4 Modeling Approach

The social security institution keeps track of fraudulent companies
and labels them fraudulent as soon as suspicious activities are discov-
ered. Having an extensive database containing time-related records,
we are able to evaluate time-consistent models at different times-
tamps and time windows. In our analysis, we define four timestamps
t ∈ {t0, t1, t2, t3}. For each timestamp, we specify within which time
window the learning algorithm has to predict whether a company will
be fraudulent or not. We evaluate the models on their detection of
short-, medium- and long-term frauds. For instance, a short-term
model estimates the probability of short-term fraud. The time win-
dows are set to 6, 12 and 24 months, by experts’ agreement.

A key challenge in predicting social security fraud is making the
right trade-off between a small time window that accurately reflects
current types of fraud, and a larger time window which provides more
confirmed evidence of fraud and anticipates new fraudulent structures.

As mentioned, in order to evaluate the relevance of relational
information in fraud prediction, we compare the Gotcha! model
with three baselines. The same instances are used in the training and
test sets for the baselines and Gotcha! network model. By doing so,
we are able to determine the added value of incorporating relational
knowledge (in terms of network-based features) on the performance
of the prediction models. We discuss each of the models in more
detail below.

Baseline - Intrinsic – is trained and tested with intrinsic-only
variables. Relationships with other companies and resources
are neglected in the analysis.

Baseline - Unipartite – integrates intrinsic and network-based
variables into one model (see Challenge II in Section 3.2.2).
The network only consists of companies that are linked to each
other by means of resources. Link weight is defined as the
number of resources that both companies share.
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Baseline - Bipartite – integrates intrinsic and network-based
variables into one model (see Challenge II in Section 3.2.2).
The network includes both companies and resources. A binary
link weight is imposed, defining whether a link exists between
a company and a resource.

Proposed Gotcha! model – enriches the bipartite model with
time-weighted network features.

Both the intrinsic and relational features can be seen as differ-
ent views from multiple data sources that describe the same problem.
This is also referred to as multi-view learning (Xu et al., 2013). In
the context of social security fraud, we collect data from three data
sources: the factual and historical data sources that register a com-
pany’s declarations and reports; and the transactional data source
which stores data from a real-time tool provided by the government
where a company should report which resources it is currently using
(see Figure 3.7). These three data sources are combined into two
views: one that describes the company’s own characteristics, and one
that specifies the company’s connections with other companies. The
traditional approach to deal with multiple views of the same data, is
to concatenate the feature vector of each view into one single feature
vector. In this chapter, we focus on the concatenation of both intrinsic
and relational features, and then apply single-view learning. Future
research (see Chapter 7) should further elaborate on how to fully ex-
ploit the two views rather than to combine them into one single view.
Co-training, for example, is a multi-view learning approach where a
model is alternately learned for each view, where the results of one
view contribute to the model development of the other view.

3.4.1 Rebalancing the data set

To address the extremely skewed data distribution (see Challenge I in
Section 3.2.2), we use the SMOTE approach (Chawla et al., 2011) to
rebalance the data set. Synthetic Minority Oversampling Technique
(SMOTE) is a combination of oversampling the minority class and
undersampling the majority class (Chawla et al., 2011). Based on the
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experimental results of Chawla et al. (2011), we choose an oversam-
pling and undersampling percentage of 400% and 200% respectively.

3.4.2 Learning algorithm

Random Logistic Forests and Random Forests are implemented to
train the models. We opt for ensemble methods as individual logistic
regression or decision trees often fail to appropriately weigh features
based on their predictiveness (Gallagher et al., 2008), which our data
set confirmed (see Section 3.5). Breiman (2001) proposed Random
Forests, an ensemble of trees. Random Logistic Forests, as proposed
by (Gallagher et al., 2008), is an ensemble of plain vanilla logistic
regressions, where each classifier is fed with ||log(N) + 1|| random
features, with N the total number of features. The final label as-
signed to an instance is based on the majority vote of each individual
model. We estimate an ensemble of 500 individual models, each with
6 random features.

Using ten-fold stratified cross-validation, we enforce the learning
algorithms to use each instance once in the test set. Stratified
sampling ensures that each sample represents the real fraud dis-
tribution. As such, we can average the results, obtaining more
stable performance measures of each of the models and resulting in a
better impression of the significance of the different types of variables.

In summary, our experiments are designed to answer the following
questions: 1) Do network-based variables yield better performance
over intrinsic-only variables? If so, by how much? 2) Is the incorpo-
ration of a bipartite, time-weighted network structure essential? 3)
Are network models able to capture changes in the environment? Do
they statistically perform better as the baselines over the different
timestamps? 4) Are the network models able to identify companies
that will perpetrate fraud in the near future and also on long term?

3.5 Results

In this section, we discuss the results of our Gotcha! network model
compared to the baselines. All models are evaluated in terms of
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the AUC score (Area Under ROC Curve), precision and recall. We
use an extensive time-dependent data set obtained from the Belgian
Social Security Institution. For each timestamp, approximately
220,000 active companies and more than 5 million resources are
registered. Our goal is to find companies that exhibit a high risk of
perpetrating fraud. We extract intrinsic features that describe the
current characteristics of a company, and network-based features that
take into account the present and past relationships to the resources.
We train and test models based on fraudulent companies found and
confirmed by experts. We analyze the difference in performance
between the baselines and the Gotcha! model, as well as the
difference in performance for the various time windows (i.e., short,
medium and long term).

Do network-based features boost the performance of traditional
models that only use intrinsic features? That is, does the Gotcha!
model significantly outperform the baselines? As opposed to existing
methods (Chau et al., 2006; Šubelj et al., 2011) which bootstrap the
network propagation algorithm with the output of an intrinsic model,
we opt to include both intrinsic and domain-driven network-based
features in the final model. There are two reasons. First, our approach
indicates which variables (including intrinsic variables) contribute to
fraudulent behavior, and as a consequence, experts will gain insights
in the current fraud process. Second, we start from a set of confirmed
fraudulent companies to initialize the propagation algorithm which
other methods lack.

Table 3.4 and 3.5 outlines the average AUC score and correspond-
ing p-values for the different estimated models, based on 10-fold cross
validation. The results show that the intrinsic baseline can be im-
proved by including network-based variables. The unipartite baseline
(1) performs significantly better than the intrinsic baseline (2) at a
significance level of 0.05 (except for year t0 on short term and t2 on
long term for the Random Forests model). We conclude that network-
based variables boost the performance of the fraud detection models.
Remember, a link weight in a unipartite network represents the num-
ber of shared resources between two companies. Including resources
as a separate entity in the network, allows us to integrate time in the
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AUC Performance
Year t0 Year t1 Year t2 Year t3

ST MT LT ST MT LT ST MT LT ST MT LT

(1) Baseline - Intrinsic

Random Log. Forests 0.8438 0.8868 0.8232 0.8604 0.8310 0.7802 0.8473 0.8074 0.7540 0.7343 0.7381 0.7288

Random Forests 0.8619 0.8782 0.8183 0.8841 0.8514 0.7988 0.8247 0.8272 0.7938 0.7805 0.7792 0.7619

(2) Baseline - Unipartite

Random Log. Forests 0.8962 0.9151 0.8650 0.9167 0.8715 0.8277 0.8953 0.8679 0.8076 0.7854 0.7702 0.7721

Random Forests 0.9056 0.9104 0.8691 0.9300 0.8924 0.8436 0.8816 0.8742 0.8159 0.8267 0.8125 0.8126

(3) Baseline - Bipartite

Random Log. Forests 0.8749 0.8893 0.8517 0.8910 0.8652 0.8101 0.8698 0.8262 0.7826 0.7798 0.7652 0.7357

Random Forests 0.8907 0.8867 0.8726 0.9075 0.8910 0.8325 0.8670 0.8543 0.8095 0.8221 0.8250 0.7897

(4) Gotcha!

Random Log. Forests 0.9233 0.9281 0.9066 0.9534 0.9380 0.8943 0.9053 0.8953 0.8707 0.9035 0.8877 0.8567

Random Forests 0.9173 0.9312 0.9246 0.9507 0.9409 0.9074 0.9069 0.9044 0.8755 0.9176 0.9114 0.8953

Table 3.4: AUC scores of the baseline and Gotcha! models.
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AUC Performance
Year t0 Year t1 Year t2 Year t3

ST MT LT ST MT LT ST MT LT ST MT LT

(1) Intrinsic - Unipartite

Random Log. Forests 0.0287 0.0126 0.0119 0.0125 0.0020 0.0084 0.0014 0.0093 0.0032 0.0389 0.0006 0.0057

Random Forests 0.0055 0.0126 0.0071 0.0133 0.0122 0.0004 0.0165 0.0023 0.0053 0.0052 0.0147 0.0143

(2) Unipartite - Bipartite

Random Log. Forests 0.9678 0.9957 0.9937 0.9798 0.9965 0.9931 0.9952 0.9928 0.9958 0.9535 0.9993 0.9956

Random Forests 0.9930 0.9870 0.9779 0.9721 0.9930 0.9997 0.9934 0.9984 0.9979 0.9978 0.9864 0.9880

(3) Bipartite - Gotcha!

Random Log. Forests 0.0760 0.0239 0.0029 0.0065 0.0081 0.0008 0.0325 0.0017 0.0009 0.0000 0.0115 0.0075

Random Forests 0.0576 0.0447 0.0177 0.0048 0.0129 0.0058 0.0184 0.0002 0.0001 0.0004 0.0005 0.0019

Table 3.5: P-values of the AUC scores.
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Figure 3.16: Variable Importance of Random Forests for timestamp t3. (TW
= time-weighted; LR = low-risk; HR = high-risk; N = neighborhood).

bipartite network by the link weight between a resource and a com-
pany. We find that the bipartite baseline (3) without time-weighted
edges does improve the intrinsic baseline (1), but does not outperform
the unipartite baseline (2). The Gotcha! model (4) significantly sur-
passes all baselines (1)-(3) in terms of AUC score from which we can
conclude that features derived from a time-weighted bipartite network
are an important enrichment for fraud detection models.

Ensemble methods perform better than the individual models.
We compare a Decision Tree model to Random Forests, and Logistic
Regression to Random Logistic Forests, and find that the highest
performance in terms of AUC score is achieved with ensemble models.
For brevity, we omit the model details.

Which variables (or variable categories) are mainly responsible for
the performance of our Gotcha! models? Figure 3.16 depicts the
variable importance of Random Forests in year t3 when we are testing
long-term fraud. The figure shows that network-based variables are
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Year t0 Year t1 Year t2 Year t3Feature
ST MT LT ST MT LT ST MT LT ST MT LT

DIRECT FEATURES
Neighborhood Degree

high-risk + + + + + + +
low-risk + - - - - - - - - +
relative - + + + - - - +

Time-Weighted Degree
high-risk - - - - - - -
low-risk - - + + + + + - -
relative + - - - - + + + - -

Quadrangles
high-risk - - + -

time-weighted - + + + + + + + + + +
low-risk + - - - - - - - -

time-weighted - + + + + +
relative + + - - + + + -

time-weighted + + + + +

Quadrangle Frequency
mean (high-risk) - - -

time-weighted + + + + + + - -
max (high-risk) + + - + +

time-weighted - + - - - + - + + +
mean (low-risk) + + - - - - - -

time-weighted - - - + - + + + + +
max (low-risk) - - - - - +

time-weighted + + + + + + + + + +

Res. Similarity
Sector - + - + - -
Location (1) - - - - - - - -
Location (2) + + + -

INDIRECT FEATURES
Exposure Score + + + +

Neighborhood Exposure
mean - - + + - + +
weighted mean + + + + + + +
maximum + + - - -

Table 3.6: Variable importance and sign of the Gotcha! model for social
security fraud detection. A positive sign indicates a positive contribution of
that variable to fraud. A negative sign means that the variable negatively
impacts fraud.
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important indicators in fraud detection models. The most predictive
features comprise features derived from the exposure scores and quad-
rangles. The exposure score captures the extent to which a node is
influenced by fraud. According to Figure 3.16, aggregated features
derived from the neighborhood exposure scores are more meaning-
ful than the company’s own exposure score. Quadrangles measure
whether a pair of resources has been transferred between multiple
companies before. The relative number of high-risk quadrangles plays
an important role in the detection of fraud. Quadrangle frequency
measures how many times a transfer between the same pair of re-
sources occurred. The more companies the two resources have in
common, the more suspicious the transfer is. This is in line with
the process of a spider construction, where resources are continuously
moved from one fraudulent company to another.

Table 3.6 summarizes the signs of the coefficients for the network
parameters, based on Random Logistic Forests. Note that, in gen-
eral, features aggregating high-risk characteristics are positively re-
lated with fraud, which complies with expert’s intuition. One excep-
tion is the high-risk time-weighted degree which is overall negatively
related with fraud. Remark that low-risk quadrangle frequency (max-
imum and time-weighted) positively impacts the suspiciousness of a
company. This means that the shift of pairs of resources from multi-
ple legitimate companies is anomalous which might indicate that the
Gotcha! model is able to find new spider constructions, and does not
completely rely on high-risk influences from the surrounding environ-
ment. Based on the large parameter value, we find that the weighted
mean neighborhood exposure score is a crucial element in the predic-
tion of fraud, which is in accordance with Figure 3.16. We conclude
that network-based features remain relevant to estimate fraud over
time, irrespective of the timestamp and the time window.

Does the impact of network-based variables depend on the intrin-
sic variables of a company or are they independent of other intrinsic
features (e.g., are network effects more pronounced for companies
that operate in a high-risk sector or legal category)? We do not find
significant interaction effects between intrinsic and network-based
features. Network-based features play an important role, irrespective
of the intrinsic characteristics of the company.
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Figure 3.17: Precision and recall for the various models.
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The companies outputted by our models are passed on to experts
for further inspection. As experts’ resources are limited, they require
models that generate a short list (high precision) with as many possi-
ble fraud cases in the near future (high recall). In practice, however,
we often need to make a trade-off between precision and recall. Fig-
ure 3.17 depicts the precision and recall for the baselines and the
Gotcha! model over various timestamps and time windows. Error
bars indicate the minimum and maximum results achieved over the
folds. Although the Gotcha! model does not achieve a higher preci-
sion than the network models, it performs on average better than the
intrinsic-only model. A pairwise t-test confirms that these results are
significant (α = 0.1), with the exception of the medium-term model
for the intrinsic baseline in year t0. Although subtle, notice the step-
wise increase in precision over the different time windows for almost
all models across all timestamps and time windows. Overall we can
say that shorter-term models achieve a slightly lower precision than
models estimated on a longer time window. This can be explained by
the lack of confirmed fraudulent cases to learn from.

In terms of recall, the Gotcha! model and baselines follow a sim-
ilar pattern: the ratio of detected companies decreases when the time
window is extended. On short term, every model succeeds to identify
all the fraudulent companies which is shown by the maximum error
bars of one. This assesses the trade-off between recall and precision.
Long-term models are more precise, which is penalized by a lower re-
call. Short-term models are able to identify all fraudulent companies
at the expense of a lower precision.

3.5.1 Out-of-time Validation

Up until now, models were trained and validated on the same times-
tamp. Results prove the superiority of our proposed model compared
to the baselines. However, in practice, models are trained on a pre-
vious timestamp and used in real-time. This section discusses our
findings when implementing the models in this way. This is called
out-of-time validation. The models are trained on year t − 1 and
tested on year t.

Figure 3.18 represents a ROC analysis of an out-of-time validation
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Figure 3.18: ROC analysis of the proposed approach applied in practice. All
models are estimated on year t2 and tested on year t3.

on medium-term period between year t2 and year t3 (other timestamps
perform similarly). The figure shows that the baselines already per-
form well. However, including network-based variables has a positive
effect on the predictive power of the network models. In particu-
lar, when a network model gives a company a high score, it has a
higher probability of begin truly fraudulent. This is shown in the
steep increase in the beginning of the curve that represents the per-
formance of the network models. Remark that the unipartite model
outperforms the bipartite model. However, when we include time-
weighted features, we achieve the best performance. This is shown by
the Gotcha! model.

The previous section illustrated that the medium- and long-term
models perform better in terms of precision. It appears, however, that
many companies detected by the short-term model will have solvency
problems sometime in the future; this is shown in Table 3.7. The table
represents the results of an out-of-time validation over the different
timestamps, when the models are estimated on short-term fraud. We
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Total
ST

Fraud
MT

Fraud
LT

Fraud

Fraud
after

analysis

Total
Fraud

Bankrupt
Non-
Active

Active
%

detected

t1

Baseline - Intrinsic 100 4 1 5 1 11% 11 8 70 22%

Baseline - Unipartite 100 15 7 2 7 31% 20 19 30 51%

Baseline - Bipartite 100 16 9 4 7 36% 17 10 37 53%

Gotcha! 100 20 6 6 10 42% 29 10 19 71%

t2

Baseline - Intrinsic 100 4 1 1 1 7% 8 7 78 15%

Baseline - Unipartite 100 7 5 4 1 17% 26 12 45 43%

Baseline - Bipartite 100 14 7 10 3 34% 24 7 35 58%

Gotcha! 100 17 4 12 7 40% 30 6 24 70%

t3

Baseline - Intrinsic 100 2 0 1 0 3% 14 1 82 17%

Baseline - Unipartite 100 15 3 3 0 21% 19 3 57 40%

Baseline - Bipartite 100 24 6 3 0 33% 12 5 50 45%

Gotcha! 100 16 12 8 0 36% 20 4 40 56%

Table 3.7: Future lifecycle of detected companies. All the models are estimated on short-term fraud, but are able to
identify high-risk companies after the predetermined time window.
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analyze the top 100 most suspicious companies, as experts can only
investigate maximum 100 companies during each time period which
thus reflects model usage in practice. Table 3.7 indicates how many
companies in the list commit fraud on short (ST Fraud), medium
(MT Fraud) and long (LT Fraud) term. The model even identifies
companies that will commit fraud after the time window of analysis
(Fraud after analysis). Note that this effect diminishes over time due
to the recency of the data used. Gotcha! improves the intrinsic
baseline by detecting 31%, 33% and 33% more fraudulent and high-
risk cases for the respective timestamps, resulting in a higher precision
and recall. The unipartite baseline is improved by 11%, 23% and 15%,
respectively. The bipartite baseline is outperformed by an increase
of 6%, 6% and 3% respectively. Recall that the ROC curve of the
bipartite model (see Figure 3.18) did not achieve a better performance
than the unipartite model. However, when analyzing the results by
a limited set of the top 100 suspicious companies, we find that the
bipartite model is more precise than the unipartite model. These
results are consistent over all timestamps.

What happens to the other companies in the list? Some are still
active (Active). Others are normally suspended (Non-active), and re-
deemed all their outstanding debts. Surprisingly, we see that 29%,
30% and 20% of these companies go bankrupt in the future. Al-
though there is a lack of hard evidence and the time passed, experts
are convinced that those companies are missed fraudsters. Assuming
the expert is right in his/her expectation, this would mean that the
detection model is able to reach higher levels of precision up to 71%,
improving the intrinsic baseline by detecting up to 55% additional
fraudsters over time (year t2). There are thus reasons to believe that
Gotcha! is suitable for retrospective fraud detection. To summarize,
by using Gotcha!, experts can identify fraudulent companies much
faster and more accurately, and potentially are still able to recover
some of the losses occurring with fraud.

3.5.2 Curtailing newly originated spider constructions

Rather than detecting far-evolved spider constructions, experts are
enticed to identify newly originated spider constructions as well, i.e.,
new fraudulent setups with only few fraudulent companies in it. In
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t3t2t1t0

Figure 3.19: Evolution of a spider construction over time. The network rep-
resents the nodes and connections as observed at time t0. Only one company
is fraudulent, but passes many resources to other companies. Future data
shows that three extra companies will commit fraud, and two companies will
go bankrupt. If we had applied Gotcha!, our results show that we could
have avoided the development of this spider construction at time t0.

Figure 3.19, we illustrate that Gotcha! is also able to find such con-
structions. The figure shows a subgraph for timestamp year t0. One
company has committed fraud during this timestamp. Note that al-
most all its resources flow towards another company. Indeed, this and
two other companies commit fraud in the future, as well as two com-
panies that went bankrupt. Our results show that if we had applied
Gotcha! during timestamp t0, we could have avoided the devel-
opment of this spider construction as those companies would have
appeared in the list generated on t0. It can be questioned whether
the two bankruptcies are purely coincidental or that they are part of
the fraud construction.

3.6 Conclusions

In this chapter, we improve the performance of traditional classi-
fication techniques for social security fraud detection by including
domain-driven network information using Gotcha!, a new fraud
detection approach. We start by identifying the challenges that
concur with fraud and design Gotcha! such that it addresses
each of these challenges to detect future fraud. In particular, we
represent the network as a time-weighted bipartite graph, including
two node types: companies and their resources. Starting from a
limited set of confirmed fraudulent companies, we spread fraudulent
influences of one node type through the network and infer an initial
exposure score for both node types, i.e., the unlabeled companies



90 3.6. CONCLUSIONS

and resources. Our propagation algorithm inherits concepts from
the Personalized PageRank algorithm as proposed by (Page et al.,
1998), and is extended by making the following domain-dependent
adjustments: (1) propagation for bipartite graphs (i.e., scoring both
companies and resources), (2) emphasizing fraud, (3) dynamical
behavior: use of a time-dependent weight to represent relationships
between companies and resources, ánd to weigh the impact of fraud,
(4) degree-independent propagation. The time-dependent weight
allows to both anticipate and forgive the riskiness of the resources.
For each company, we aggregate the properties of the direct and
indirect neighborhood, and combine them with intrinsic features.

The Social Security Institution benefits from our developed
approach in multiple ways: (1) Guided search for fraud. Instead of
randomly investigating companies, the Gotcha! algorithm produces
an accurate list of companies that are worthwhile to investigate
by experts. Our experiments show that our Gotcha! network
model exploits essential information for predicting future fraud more
efficiently. Our model is compared to three baselines. The first one is
an intrinsic-only baseline and uses only intrinsic features. The second
one is a unipartite baseline, linking the companies directly to each
other and aggregating resource information in the link weight. The
third one extends the network representation to a bipartite graph
but does not include time in the link weights. Results show that
Gotcha! produces more accurate results than the baselines in terms
of their AUC score. We find that network models achieve a higher
precision, although the recall is approximately the same. Hence,
network-driven models reduce the set of high-risk companies passed
on to the experts for further screening. (2) Faster fraud detection.
The predictability of short-term models is surprising. Short-term
models are not only able to accurately predict which companies will
commit fraud in the near future, but also identify companies that
perpetrate fraud many years later. This results in a higher overall
precision compared to medium- and long-term models, favoring the
short-term models in the fraud detection process. This also indicates
that, so far, many fraudulent companies already radiate fraudulent
behavior, which used to take several months, or even years, before
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they were actually captured. (3) Immediate feedback loop. Findings
of experts are immediately implemented in the models. The models
update their detection process accordingly. Consequently, changes
in the fraud environment are captured by the models. Our results
show that models indeed use different sets of variables over time.
Our future work will elaborate more on active learning, by updat-
ing the model using both correctly and incorrectly classified instances.

Although we applied our approach to social security fraud detec-
tion, the results in the Chapter 6 show that our proposed framework
can be employed for the detection of other fraud types where the
network can be represented as a higher order graph (n-partite graph).
Chapter 6 will elaborate further on the application of this approach on
credit card fraud where merchants are explicitly connected to buyers
through the transactions they pursue. This work focused on finding
individual companies. Another topic for future research is community
detection which may find groups of suspicious companies. Commu-
nity detection allows experts to gain a thorough understanding in the
creation and development of spider constructions. The next chapter
will discuss community detection into more details.





Chapter 4

Gotcha’ll! Fraudulent
clique detection

Given a labeled graph containing fraudulent and legitimate nodes,
which nodes group together? How can we use the riskiness of node
groups to infer a future label for new members of a group? This chap-
ter focuses on social security fraud where companies are linked to the
resources they use and share. The primary goal in social security
fraud is to detect companies that intentionally fail to pay their contri-
butions to the government. We aim to detect fraudulent companies by
(1) propagating a time-dependent exposure score for each node based
on its relationships to known fraud in the network (see Section 3.3.3);
(2) deriving cliques of companies and resources, and labeling these
cliques in terms of their fraud and bankruptcy involvement; and (3)
characterizing each company using a combination of intrinsic and re-
lational features and its membership in suspicious cliques. We show
that clique-based features boost the performance of traditional rela-
tional models.

4.1 Introduction

So far, the fraud detection literature has mainly focused on analyzing
guilt-by-association (Koutra et al., 2011), i.e. how relationships
with fraudsters affect the probability that a person of interest will
commit fraud. For example, suppose there are two fraudsters B and

93
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Figure 4.1: Subgraph of companies (large nodes) connected to their resources
(small nodes). Fraudulent companies are dark-colored, currently-legitimate
companies are light-colored. Companies form cliques (i.e., fully connected
subgraphs) based on their use of the same set of resources.

C who are both connected to person A (let’s say, by a friendship
relation), then guilt-by-association analyzes each relationship to
those neighbors separately. However, this approach does not take
into account the relationships between the neighbors. In this work,
we introduce guilt-by-constellation in which we derive suspicious
cliques of nodes, and characterize each node in terms of its clique
membership. A clique is a fully connected subgraph of the network
where each node is connected to every other node in the subgraph.
For example, suppose now that persons B and C also know each
other and, as a consequence, persons A, B and C form a clique of
friends. Guilt-by-constellation investigates whether this will have a
stronger effect on the fraud probability of person A.

In this chapter, we address social security fraud and show a
successful example of how clique-based features are an important
element in inferring future fraud. We define fraud as those companies
that intentionally go bankrupt in order to avoid paying tax contri-
butions: their debt to the government will be unrecoverable. We
observe that after a certain time period a new company is founded
which uses almost the same resources as the previous company, like
machinery, equipment, employees, address, buyers, suppliers, etc.
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(see Figure 4.1). As opposed to many graph-related works, we exploit
bipartite graphs, connecting two object types, i.e. companies and
resources. We find that when a new company enters the market and
inherits (a part of) the same set of resources previously associated
with a fraudulent company (or companies), its fraud risk increases.

We introduce clique-based features which are shown to outper-
form previous approaches to this problem. In particular, we define
both complete- and partial-cliques (i.e., companies share all or part
of their resources with each other) and investigate: (1) Does the prob-
ability of perpetrating future fraud increase when fraudulent compa-
nies are closely connected to each other, i.e. they form a dense group
where they all share the same (set of) resources? (2) If a new com-
pany enters such a group, what would we say about its probability
to commit fraud? Based on these analyses and observations, we de-
fine relational and clique-based features using a graph representation.
Relational features aggregate the characteristics of close neighbors by
treating each of them as a separate individual regardless of their links
to other neighbors (i.e., guilt-by-association). Clique-based features,
on the other hand, also take into account the connectivity within the
neighborhood (i.e., guilt-by-constellation). In addition to networked
features (which capture peer pressure), we incorporate intrinsic fea-
tures in our models. These intrinsic features are able to detect new
types of fraud (e.g., ones that are not imitated). Remark that our
models are dynamically updated, by extracting time-dependent in-
dividual and clique membership scores for each company and by re-
estimating the corresponding models. We contribute by proposing a
novel approach to detect fraud by:

• Defining cliques in a bipartite graph where one type of nodes
(i.e., the companies) are connected to another type of nodes
(i.e., the resources) (see Section 4.4.3).

• Using a time-dependent individual exposure score (Section 4.4.2)
of every node to label cliques in the network and infer a suspi-
ciousness score (Section 4.4.3) for that clique.

• Featurizing new instances based on the properties of the cliques



96 4.2. SOCIAL SECURITY FRAUD

they belong to, and integrating the extracted features with in-
trinsic and relational features (see Section 4.4.4).

The remainder of the paper is organized as follows: background,
related work, task description, empirical evaluation and conclusions.

4.2 Social Security Fraud

Our proposed approach will be applied to social security fraud detec-
tion. While this is only one application to integrate clique member-
ships in detection algorithms, we believe that a similar approach is
promising on comparable application domains, like credit card fraud
detection, insurance fraud, opinion fraud, and so on. In this paper, we
study social security data acquired from the Belgian Social Security
Institution.

Companies need to contribute employer and employee taxes to the
government. We say that if a company intentionally goes bankrupt
so as not to pay its tax contributions, the company is fraudulent.
Remark that fraudulent companies often belong to a web of fraud,
i.e. the resources of fraudulent companies are (partly) transferred to
other companies which will commit fraud on their turn. E.g., fraudu-
lent companies A, B and C operated at address p and used suppliers
a and b. All those resources are now transferred to active company
D. Company D is likely to commit fraud in the future. While experts
have a great intuition in finding fraudulent companies, they expect
that some bankruptcies classified as regular are in fact undetected
fraudulent bankruptcies. We will use the network of companies and
resources to judge the fraud probability or risk of a set of active com-
panies. Resources move in bulk from one fraudulent company to an-
other, leaving a trail of fraud. Using the company-resource network,
we propose to capture clique behavior of the resources to cluster to-
gether companies. We will extract both a fraud and bankruptcy score
for each clique: resource involvement in many fraudulent companies
increases the fraud risk of future companies that use the same set of
resources. Resource involvement in many bankruptcies might increase
the fraud risk as well, as this may uncover an undiscovered group of
fraudulent companies. We expect that currently-legitimate members
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of cliques that are highly associated with fraud or bankruptcy, have
a higher probability of committing fraud in the near future. In this
work, we try to answer questions like (1) does guilt-by-constellation
detect future fraud more efficiently (2) what effect does a suspicious
(i.e., fraudulent) clique have on currently legitimate companies that
are part of that clique? (3) what effect does a clique characterized
only by (apparent) regular bankruptcies have on currently-legitimate
companies that are part of that clique?

4.3 Related Work

While previous literature acknowledges the importance of network
analysis in fraud detection, most research focuses on the so-called
guilt-by-association. Many works aggregate relational information in
features such as degree, proportion, count, etc. (Neville et al., 2005;
Fast et al., 2007; Van Vlasselaer et al., 2013) or apply inference proce-
dures to spread the fraudulent influence throughout the whole network
(Pandit et al., 2007; Akoglu et al., 2013; Van Vlasselaer et al., under
review; Akoglu et al., 2010). The aforementioned techniques neglect
the density among the neighborhood of the node of interest, i.e. the
extent to which the surrounding nodes are connected to each other as
well. This is known as clusters, communities or cliques in the network
(Newman, 2010). Cortes et al. (2001) formulated the idea to compute
the community of interest (COI) centered around each node in the net-
work and compare the overlap between COI’s. A significant overlap
with a fraudulent COI might indicate that the COI is also fraudulent.
Fast et al. (2007) developed a fraud detection approach for the Na-
tional Association of Securities Dealers (NASD) which uses tribes or
clusters of representatives. The authors focused on suspicious pairs
of representatives that do not comply with a normal pattern in the
industry. Akoglu et al. (2013) proposed FraudEagle, a novel approach
to spot fraudulent reviewers and reviews for opinion fraud detection.
The authors used a co-clustering (Chakrabarti et al., 2004) technique
to group together the top high-risk users for visualization purposes.
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Figure 4.2: Flow-chart of detection process.

4.4 Proposed Method

4.4.1 Task description

The primary goal of this paper is to predict which currently active
companies form a threat to perpetrate fraud in the future by esti-
mating a detection model that consist of a combination of intrinsic,
relational and clique-based features. Specifically, our approach con-
sists of four steps, as illustrated in Figure 4.2:

1. Individual scoring: The influence of few known fraudulent
(bankrupt) companies is spread through the network, deriving
a time-dependent exposure score for every node. That is, each
company and resource receive a score based on the presence of
fraudulent (bankrupt) influence in their neighborhood.

2. Clique detection and scoring: Resources and companies that are
frequently associated with each other are clustered in a clique.
We aggregate the individual exposure scores of the involved com-
panies and the resources to derive a suspiciousness score for each
clique.
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3. Feature extraction: We calculate the value of the features for
each currently active company based on its clique memberships
(31), and combine them with intrinsic (18) and relational (2)
features. In total, we have 51 company characteristics.

4. Model estimation: We integrate all extracted features and try
to predict which companies are highly sensitive to commit fraud
in the future

Recall that a bipartite graph G(V1,V2, E) is a graph that connects
nodes v1 ∈ V1 to nodes v2 ∈ V2, such that for each edge the following
property holds:

e(v1, v2) ∈ E|v1 ∈ V1 and v2 ∈ V2 (4.1)

Let V1 be the set of company nodes, and V2 the set of all resource
nodes, then a company is uniquely connected to resources and vice
versa. At a certain timestamp t, all companies are labeled according
to their fraud involvement `f (vi) ∈ {legitimate, fraud} and their
bankruptcy involvement `f (vi) ∈ {active, bankrupt}. Those labels
are used to infer an individual fraud and bankruptcy exposure score
for every company and resource.

4.4.2 Individual Exposure Score

The individual exposure score is derived from Equation 3.6. Recall
that the individual exposure score measures the extent to which each
node is influenced by fraud. In this work, each clique is character-
ized by a fraud score and a bankruptcy score. In order to do so, we
estimate two exposure scores: (a) one where the restart vector ~z is
bootstrapped with fraud, and (b) one where ~z is bootstrapped with
bankruptcy. Recall that (a) corresponds to the calculation in Sec-
tion 3.3.3. The bankruptcy score is computed by changing the restart
vector accordingly, and{

vj = e−βh if entry j is a bankrupt company
vj = 0 otherwise

with β the decay constant, and h the time passed since the com-
pany filed for bankruptcy where h = 0 represents a current fraud com-
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pany. Afterwards, the restart vector ~v is transformed to the degree-
adapted starting vector ~z by taking the element-wise product with
the degree vector ~d where di captures the degree of node i. The nor-
malized degree-adapted vector is ~znorm which sums to 1.

4.4.3 Clique Detection and Scoring

Given present and past relationships of the companies and their
resources, can we build cliques of companies and their associated re-
sources, and score each clique based on the fraudulence or bankruptcy
that resides in each clique? First, we define how we can extract all
cliques in a bipartite graph. Second, we score each clique based on
the exposure scores derived in the previous section.

Clique Detection According to Boccaletti et al. (2006), a com-
munity is defined as a tightly connected group of nodes or subgraph
in the network. A clique is the strongest definition and requires that
all objects of a subgraph are connected to each other. In bipartite
graphs, we define a clique as a subgraph in which each type-one ob-
ject is connected to each type-two object. This means that we induce
a subgraph from the network in which all companies are connected
to all resources and vice versa. Note that our approach only tends to
find company cliques, and uses resources to associate the companies.

We apply a bottom-up approach to find all cliques in the network,
which we describe in detail as follows. First, we start by enumerating
all pairs of companies that share at least two resources. Since we are
inclined to analyze strong relationships between companies, we require
that each clique contains at least two companies and two resources.
For each two companies in the data set, we list all of their shared
resources. Next, we merge any two pairs of companies that share the
same resources (or an intersection of the resources). If two pairs can
be merged together in a complete-clique based on an exact match of
all resources, the original pairs are deleted from the set of cliques.
If the resources of two pairs of companies partially overlap, the two
pairs are merged if both groups share at least two resources together.
Those cliques are considered partial-cliques. The original pairs are
kept in the set of cliques. This step is repeated until no newly created
cliques can be merged together, i.e. until there is no exact or partial
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Figure 4.3: Clique detection process. Companies A, B and C share the same
(set of) resources. The top figure illustrates the merging process for an exact
match between pairs of companies. The original pairs are deleted from the
final set. Only clique α is in the remaining set of cliques. The bottom figure
represents a partial overlap between pairs of companies. Here, the original
pairs β and γ, together with a new clique α are all added to the new set of
cliques.
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overlap between the new cliques in the set. We illustrate examples of
the types of cliques this procedure creates in Figure 4.3.

Typically, a clique either consists of many companies that share
only few resources or few companies with many resources. Since we
do not delete partially overlapping groups, some cliques might be
contained in other cliques (see the bottom figure in Figure 4.3). Thus,
we are able to obtain insights in the intensity of the relationships
between companies. For example, the bottom figure illustrates that
company B is part of a “large” partial-clique α that connects it to
companies A and C. This clique is formed based on two shared
resources (c-d). Yet, company B is also contained in clique β based
on four shared resources (a-d). As such, company A will have a larger
influence on company B than company C, as company A is stronger
connected to company B than to company C.

Clique scoring To score the cliques in terms of fraud and
bankruptcy involvement, we use the individual propagated exposure
score of each node. More concretely, given the known fraudulent and
bankrupt companies, we characterize each clique by:

1. COUNT: The absolute number of fraudulent and bankrupt
companies in the clique.

2. PROPORTION: Relative number of fraudulent and bankrupt
companies in the clique.

3. (WEIGHTED) SUM: Sum of company (resource) fraud and
bankruptcy exposure scores, optionally weighted by the number
of companies (resources) in the clique.

4. MAGNITUDE: Total size of the clique (companies and re-
sources) and the number of companies and the number of shared
resources contained in the clique.

Note that most cliques are legitimate, not containing any company
ever associated with fraud or bankruptcy before. Approximately 5%
and 10% of all the identified cliques contain at least one company
that was already labeled as fraudulent or bankrupt respectively. In
the next section, we will introduce how we define clique-based features
and characterize each company based on its clique memberships
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4.4.4 Feature extraction

The detection algorithm should be able to identify high-risk compa-
nies rather than high-risk resources. Therefore, we extract features
for each active company at a certain timestamp. In general, we define
three sets of features: intrinsic, relational and clique-based features.

Intrinsic A company often exhibits suspicious characteristics
without being influenced by others. Intrinsic features reflect company
behavior as if the company was treated in isolation. Those features
include a.o. sector, size, age, financial statements, etc.

Relational The fraud and bankruptcy exposure score embody
the proximity of fraudulent or bankrupt influence in the company’s
neighborhood. A high fraud score indicates that many companies in
the surrounding environment were already caught by perpetrating
fraudulent activities. The bankruptcy score reveals the extent
to which neighboring companies are bankrupt. These scores are
computed in Section 4.4.2.

Clique-based While some companies are isolated, other compa-
nies highly interact with their neighborhood. Cliques of closely con-
nected companies are interesting to analyze in a fraud detection con-
text. We define three types of cliques: (1) innocent - this corresponds
to the majority of the identified cliques ( 90%), (2) bankruptcy - ap-
proximately 10% of the cliques are associated to at least one bankrupt
company, and (3) fraudulent - around 5% of the cliques is sensitive
to fraud. The cliques captured in (3) are also part of the cliques
identified in (2). Since a company can belong to multiple cliques,
clique behavior is aggregated. That is, for each company we derive
the following clique-based features:

1. COUNT: Number of cliques to which the company belongs.

2. AVERAGE: The characteristics as defined in Section 4.4.3 are
averaged over all the cliques the company belongs to. For ex-
ample, the average fraud count reflects the average number of
fraudulent companies that reside in a clique.



104 4.4. PROPOSED METHOD

3. MAXIMUM: The danger of considering the average values of
all the associated cliques is that the effect of one highly suspi-
cious clique can be filtered out by many innocent cliques. There-
fore, we include the maximum value for each of the identified
clique characteristics. For example, the maximum fraud count
captures the maximum number of fraudulent companies that are
within one clique.

In total, we create 31 clique-based features for each active company.
Around 70% of all companies are not included in a clique, and have
zero values for the clique-based features. While most companies are
not included in a clique, approximately 75% of all fraudulent compa-
nies are member of at least one clique. All the aforementioned features
are combined and passed to the detection process.

4.4.5 Detection model

The data set provided by the social security institution is a dynamic
data set which includes past and present company characteristics and
past and present relationships between companies and their resources.
In order to validate the detection power over time, we choose to re-
estimate the model for four timestamps and three time windows. More
concretely, for every timestamp, we extract the features of all active
companies according to Section 4.4.4, and infer a model to predict
which companies will perpetrate fraud within a certain time window.
We define three time windows: short, medium or long term. Based on
experts’ knowledge, we arbitrarily set the time windows to 6, 12 and
24 months. While short-term models are able to capture new fraud
mechanisms, long-term models have more evidence to learn from. The
models are re-estimated on a yearly basis, i.e. for timestamps year
t0 − t3 (analogous to Chapter 3). Due to confidentiality issues, we do
not specify the exact timestamp.

Fraud data sets commonly represent an extremely skewed distri-
bution. This means that often less than 1% of the observations are
fraudulent. In order to rebalance the data set, we apply SMOTE
(Synthetic Minority Oversampling Technique) as proposed by Chawla
et al. (2011) on the training set. Based on empirical evidence of
Chawla et al. (2011), the oversampling and undersampling percent-
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age are set to 400% and 200% respectively. Previous literature
acknowledges that the featurization of network-related characteristics
of an object might create a multitude of input features which can
deteriorate the results, and suggests the use of ensemble methods to
carefully select the most important features (Gallagher et al., 2008).
Our models are estimated using Random Forests (Breiman, 2001).
This ensemble method infers a set of decision trees by randomly
selecting features. A voting process decides the label of each instance.

For each timestamp, the data set is randomly split into training
and test sets. The training set is manipulated by SMOTE to address
the imbalanced data distribution. The next section will discuss the
results of our detection models. The results reflect the performance
of the derived models on the test set.

4.5 Empirical Evaluation

In this section, we evaluate our estimated models in terms of perfor-
mance volatility over time, prediction power and precision on different
time windows, and importance of the various sets of features.

4.5.1 Data Set

This approach is tested on data received from the Social Security
Institution of Belgium. More details about the data can be found in
Chapter 3.

4.5.2 Performance over time

Figure 4.4 depicts the ROC curves of the various timestamps of our
analysis. All ROC curves present the model performance for a long-
term time window. The ROC curves indicate that the combined mod-
els generate better results. In addition, a pairwise t-test confirms that
the combined approach performs significantly better than the other
models for all timestamps and time windows (α < 0.05). Especially
the steep slope of the curve clearly indicates that the combined model
is particularly good in classifying companies as fraudulent that have
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Figure 4.4: ROC curves for the different timestamps of our analysis. Notice
that the combined model which includes all of the intrinsic, relational, and
clique-based features outperforms the models using any one of those features
alone.
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Figure 4.4: ROC curves for the different timestamps of our analysis. Notice
that the combined model which includes all of the intrinsic, relational, and
clique-based features outperforms the models using any one of those features
alone.
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AUC Performance
Year t0 Year t1

ST MT LT ST MT LT

Relational - Intrinsic 0.2758 0.3500 0.0143 0.3890 0.0452 0.0012

Cliques - Intrinsic 0.9101 0.9941 0.7761 0.7327 0.2597 0.4968

Cliques - Relational 0.0888 0.0070 0.0003 0.0722 0.0764 0.0154

Combined - Intrinsic 0.0001 0.0041 0.0000 0.0018 0.0016 0.0000

Combined - Cliques 0.0012 0.0000 0.0000 0.0025 0.0001 0.0000

Combined - Relational 0.0117 0.0141 0.0019 0.0020 0.0003 0.0008

AUC Performance
Year t2 Year t3

ST MT LT ST MT LT

Relational - Intrinsic 0.0464 0.0358 0.0125 0.0001 0.0000 0.0002

Cliques - Intrinsic 0.6689 0.8191 0.7526 0.0123 0.0203 0.0151

Cliques - Relational 0.0060 0.0027 0.0013 0.1484 0.0035 0.0026

Combined - Intrinsic 0.0011 0.0005 0.0001 0.0000 0.0000 0.0000

Combined - Cliques 0.0002 0.0000 0.0000 0.0009 0.0000 0.0000

Combined - Relational 0.0018 0.0232 0.0006 0.0077 0.0008 0.0000

Table 4.1: P-values of the AUC scores.

a high cut-off value (i.e., companies with a high fraud probability ac-
cording to the model are in reality often sensitive to fraud). This
high true positive rate is particularly important because experts have
limited resources available to investigate high-risk companies, and are
able to inspect only a few companies in each timestamp. Note from
the figures that the clique-based and the combined model have a sim-
ilar increase for high cut-off values. This might indicate that the
clique-based features are mainly responsible for the high prediction
power of the combined model when only a limited number of com-
panies is selected. The relational model also follows a steep increase,
but especially lifts up the curve of the combined model in the middle,
when the clique-based model performs poorly.

Finally, even without network-based features, the model achieves a
relatively high performance. This is illustrated by the intrinsic model
in the figures. However, relational and clique-based features are an
important element in boosting the performance, and should therefore
be included in the detection models.
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Figure 4.5: Precision of the top 100 most high-risk companies. Generally
speaking, long-term models perform better than short- and medium-term
models.

4.5.3 Precision

Fraud inspection is a time-consuming task and experts only select few
companies for further investigation. Detection models should comply
with these requirements. Given that the experts can only process
approximately 100 companies in each timestamp, which companies
should be inspected? Our results (from the previous section) showed
that the combined model is preferred above the other models, but are
the models equally precise in finding high-risk companies on short,
medium and long term?

In Figure 4.5, we illustrate the precision for the combined model
for each timestamp and each time window. Except for Year t1 where
we have limited networked data, long-term models have a higher pre-
cision. More than 20 out of 100 companies that are classified as fraud-
ulent in Year t4, do indeed perpetrate fraud in the future. This means
that high-risk companies already radiate suspicious behavior and char-
acteristics even before they effectively perform fraudulent activities.
The precision of the detection model is in general low. However, given
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Figure 4.6: Variable Importance of the top 15 features in the combined
model.

the extremely unbalanced data set of the social security institution,
these are remarkable results. While our models are able to reach a
precision of 22%, random classification would only result in a random
precision of less than 0.2%.

4.5.4 Variable importance

We would like to assess which variables contribute to the high predic-
tion power of the estimated detection models. Figure 4.6 illustrates
that the top 15 most important variables are mainly clique-based fea-
tures, although one of the intrinsic features also has a high explana-
tory power. Note that the most important clique-based variables are
bankruptcy, rather than the fraud related variables. We can conclude
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that an environment which is highly sensitive to bankruptcy might
actually be a construction with hidden fraud.

4.6 Conclusions

While the challenge of fraudsters is to find the loopholes in the law, it
becomes the challenge of the data analyst to characterize suspicious
activities and to categorize new, similar activities as high-risk. In
this work, instead of solely focusing on intrinsic behavior such as de-
mographics, we choose to incorporate network-based features. First,
we define an exposure score that quantifies both the fraudulent as
well as the bankruptcy involvement of the neighborhood. Second,
we form cliques of companies based on the resources they share, and
score each clique in terms of the sensitivity of that clique to fraud
and bankruptcy based on the computed exposure scores. For every
defined timestamp, we derive features for each active company and
learn a detection model to predict which companies exhibit a high
risk of perpetrating fraud in the future. Our results indicate that the
combination of clique-based, relational and intrinsic features achieves
the best performance. Also, long-term models have a higher preci-
sion when we analyze the top 100 high-risk companies, as more data
becomes available. In particular, our model is able to uncover 22%
fraud cases, which is very high considering the extremely skewed class
distribution (< 0.2%). Moreover, we find that clique-based features
have a high explanatory power and are an important indicator for
future fraud.





Chapter 5

Afraid: Active Fraud
Investigation and
Detection

Fraud is a social process that occurs over time. This chapter intro-
duces a new approach, called Afraid, which utilizes active inference
to better detect fraud in time-varying social networks. That is, clas-
sify nodes as fraudulent vs. non-fraudulent. In active inference on
social networks, a set of unlabeled nodes is given to an oracle (in this
case one or more fraud inspectors) to label. These labels are used
to seed the inference process on previously trained classifier(s). The
challenge in active inference is to select a small set of unlabeled nodes
that would lead to the highest classification performance. Since fraud
is highly adaptive and dynamic, selecting such nodes is even more
challenging than in other settings. Afraid is applied to a real-life
fraud data set obtained from the Belgian Social Security Institution
to detect social security fraud, which is more thoroughly discussed
in Chapter 3. Recall that, in this setting, fraud is defined as the
intentional failing of companies to pay tax contributions to the gov-
ernment. Thus, the social network is composed of companies and
the links between companies indicate shared resources. Results show
that Afraid outperforms the approaches that do not utilize active
inference by up to 15% in terms of precision.

113
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5.1 Introduction

Data mining techniques offer a good solution to find patterns in vast
amounts of data. Human interaction is often an indispensable part of
data mining in many critical application domains (Baesens, 2014; Bae-
sens et al., 2015). Especially in fraud detection, inspectors are guided
by the results of data mining models to obtain a primary indication
where fraudulent behavior might situate. However, manual inspection
is time-consuming and efficient techniques that dynamically adapt to a
fast-changing environment are essential. Due to the limited resources
of fraud inspectors, fraud detection models are required to output
highly precise results, i.e. the hit rate of truly identified fraudsters
should be maximal.

In this chapter, we investigate how active inference fosters the
fraud detection process for business applications over time. Active
inference is a subdomain of active learning where a network-based al-
gorithm (e.g., collective inference) iteratively learns the label of a set
of unknown nodes in the network in order to improve the classifica-
tion performance. Given a graph at time t with few known fraudu-
lent nodes, which k nodes should be probed – that is, inspected to
confirm the true label – such that the misclassification cost of the
collective inference (CI) algorithm is minimal. We consider across-
network and across-time learning, as opposed to within-network learn-
ing (Kuwadekar and Neville, 2011). We combine the results of a CI
algorithm with local-only features in order to learn a model at time t
and predict which entities (i.e., nodes) are likely to commit fraud at
time t+ 1.

Each time period fraud inspectors have a limited budget b at
their disposal to investigate suspicious instances. This budget might
refer to time, money or the number of instances to be inspected. If
we invest k of budget b to ask inspectors about the true label of a
set of instances selected based on a selection criterion, will the total
budget b be better spent? That is, do we achieve more precise results
by investing a part of the budget (i.e., k) in learning an improved
algorithm while the remaining budget l = b− k is used to investigate
the re-evaluated results, rather than by using the complete budget b
to inspect the initial results without learning?
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Bankrupt company

Company A

Company B

Company C

Figure 5.1: Fraud process: a fraudulent company files for bankruptcy in
order to avoid paying taxes and transfers its resources to other companies
that are part of the illegal setup, also known as a spider construction (see
Section 3.2).

This chapter introduces Afraid (short for: Active Fraud
Investigation and Detection) which is applied to social security fraud.
In social security fraud, companies set up illegal constructions in
order to avoid paying tax contributions. While detection models can
rapidly generate a list of suspicious companies, which k companies
should be inspected such that the expected label of all other compa-
nies minimizes the tax losses due to fraud?

Our contributions are the following:

• Fraud is dynamic and evolves over time. Afraid is a new ap-
proach for active inference in a timely manner by (1) using time-
evolving graphs, and (2) weighing inspectors’ decisions accord-
ing to recency. (1) The influence that nodes exercise on each
other varies over time. The extent of influence is captured in
time-varying edge weights of the graph. Additionally, greater
importance is attached to more recent fraud. (2) Given that
an inspector labels a specific node as legitimate at time t, can
we assume that the node is still legitimate at time t + 1? This
chapter elaborates on how to temporarily integrate an inspec-
tor’s decision in the network model, decreasing the value of the
decision over time.

• A combination of simple and fast probing strategies is proposed
to identify nodes that might possibly distort the results of a
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collective inference approach. These strategies are applied to
a large real-life fraud graph. Probing decisions made by (1)
a committee of local classifiers, and (2) by insights provided by
inspectors are evaluated. (1) A committee of local classifiers col-
lectively votes for the most uncertain nodes without relying on
domain expertise. (2) Inspectors use their intuition to formalize
which nodes might distort the collective inference techniques.

• The benefits of investing k of the total budget b in learning a
better model are investigated. Results show that active infer-
ence boosts the performance of the classifier in terms of precision
and recall.

The remainder of the chapter is organized as follows: background
(Section 5.2), network definition (Section 5.3), problem definition and
active inference (Section 5.4), results (Section 5.5), related work (Sec-
tion 5.6) and conclusion (Section 5.7).

5.2 Background

The data used in this study is obtained from the Belgian Social Se-
curity Institution, a federal governmental service that collects and
manages employer and employee social contributions. We say that
a company is fraudulent if the company is part of an illegal set up
to avoid paying these taxes. Recent developments have shown that
fraudulent companies do not operate by themselves, but rely on other
associate companies (Van Vlasselaer et al., 2013, 2015). They often
use an interconnected network, the so-called spider constructions, to
perpetrate tax avoidance. Figure 5.1 illustrates the fraud process. A
company that cannot fulfill its tax contributions to the government
files for bankruptcy. If the company is part of an illegal setup, all
its resources (e.g., address, machinery, employees, suppliers, buyers,
etc.) are transferred to other companies within the setup. While
the economical structure of the company is disbanded by means of
bankruptcy, the technical structure is not changed as all resources
are re-allocated to other companies and continue their current activi-
ties. Network analysis is thus a logical enrichment of traditional fraud
detection techniques. For more details, see Section 3.2.1.
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Graph G Graph G Summary Graph Sttt-1Graph Gt-s

...

Figure 5.2: A summary graph St at time t contains all nodes and edges
observed between time t and time t− s.

5.3 Network definition

This section elaborates on how to use the temporal-relational data to
create time-evolving fraud networks. Given relational data at time
t, the corresponding graph is defined as Gt(Vt, Et), with Vt the set of
nodes (or points, or vertices) and Et the set of edges (or lines, or links)
observed at time t. Graph Gt describes the static network at time t.

Besides current relationships, dynamic graphs keep track of the
evolution of past information, e.g. nodes that are added to or removed
from the network, edges that appear and disappear, edge weights that
vary over time, etc. In order to include a time aspect in the network,
we define the summary graph St at time t as all the nodes and edges
observed between time t−s and t. Figure 5.2 depicts how a summary
graph is created. For this problem setting, we include all historical
information available (s = t), as fraud is often subtle and takes a
while before the relational structure is exhibited. Although historical
links hold important information about possible spread of fraud, their
impact differs from more recent links. Based on work of Rossi and
Neville (2012); Sharan and Neville (2007), we exponentially decay the
edge weight over time as follows

w(i, j) = e−γh (5.1)

with γ the decay value (here: γ = 0.02) and h the time passed
since the relationship between node i and j occurred and where h = 0
depicts a current relationship. Mathematically, a network is repre-
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sented by an adjacency matrix A of size n× n where{
ai,j = w(i, j) if i and j are connected

ai,j = 0 otherwise
(5.2)

Since companies are explicitly connected to the resources they use,
our fraud graph has a dual structure: every edge in the network con-
nects a company to a resource. The network composed of n companies
and m resources is called a bipartite network, and is of size n × m.
The corresponding adjacency matrix is Bn×m. As we know when a
resource was assigned to a company, the edge weight corresponds to
the recency of their relationship, exponentially decayed over time. In
case multiple relationships exist between a company and a resource,
we only include the most recent one. An edge weight with maximum
value 1 refers to a current assignment.

5.4 Active Inference

Collective inference is a network analysis technique where the label
of a node in the network is said to depend on the label of the neigh-
boring nodes. In social network analysis, this is often referred to as
homophily (McPherson et al., 2001), where one tends to adopt the
same behavior as one’s associates (e.g., committing fraud if all your
friends are fraudsters). A change in the label of one node might cause
the label of the neighboring nodes to change which in turn can affect
the label of their neighbors, and so on. As a consequence, a wrong
expectation of one node strongly affects the estimated label of the
other nodes. Active inference is analogous to active learning. It se-
lects an observation to be labeled in order to improve the classification
performance. While active learning iteratively re-learns and updates
a classifier by the newly acquired label, active inference re-evaluates
the labels of the neighboring nodes using an existing model. For a
profound literature survey of active learning, we refer the reader to
Settles (2009).

In this chapter, we train a set of out-of-time local classifiers ~LC
at time t where each observation i is composed of a set of fea-
tures ~xi derived at time t − 1 and the corresponding label Li =
{fraud, non-fraud} observed at time t. The set of features consists



Afraid: Active Fraud Investigation and Detection 119

Algorithm 1: Active inference for time-varying fraud graphs.

input : Summary graph St−1 and St where St(Vs,t, Es,t),
time-weighted collective inference algorithm GOTCHA!,

budget k, set of labeled fraudulent nodes Lt−1 and Lt.
output: Labeled nodes Lt+1.

# Initialize LCt

~ξt−1 ← GOTCHA!(St−1,Lt−1); 5.4.1

LCt ← LC(~xt−1[~at−1, aggr( ~Nt−1), ~ξt−1],Lt);
# Active inference

`← 0

while ` < k do
~ξt ← GOTCHA!(St,Lt);
Lt+1 ← LCt(~xt[~at, aggr( ~Nt), ξt],Lt);
Select node vi to probe; 5.4.2

if y(vi) = fraudulent then

Lt(vi)← (fraud,t); 5.4.3

else if y(vi) = non-fraudulent then

∀vj ∈ Ni : w(j, i) = 0; 5.4.3

end

`← `+ 1

end
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of (1) intrinsic features ~ai, and (2) neighborhood features (see Sec-
tion 5.4.1). Intrinsic features are features that occur in isolation and
do not depend on the neighborhood. The intrinsic features that de-
scribe the companies in this analysis include age, sector, financial
statements, legal seat, etc. The neighborhood features are derived
by a collective inference technique. We apply each classifier LCm to
observations from time t in order to predict which observations are
likely to commit fraud at time t + 1. In active inference, inspectors
are asked to provide their most probable label at time t+ 1 which is
directly integrated in the current network setting to infer a new expec-
tation of the neighbors’ label. This is across-time and across-network
learning. Recall that inspectors have a total budget b at their disposal
each timestamp, and are able to invest k < b budget in improving the
current collective inference algorithm. Using the updated feature set,
the LC re-learns a new estimate of each of the nodes’ fraud probabil-
ity. However, as inspectors’ decisions are only temporarily valid, we
temporally weigh the belief in a decision, by decreasing its value in
time. Algorithm 1 provides more details on the procedure for active
inference in time-varying fraudulent networks, and will be discussed
in the remainder of this section.

5.4.1 Collective Inference Technique

Many collective inference algorithms have been proposed in the lit-
erature (see Sen et al. (2008) for an overview). In this chapter, we
employ a set of local classifiers that evaluates the classification decision
on both intrinsic and neighborhood features. For the neighborhood
features, we make a distinction between (1) local neighborhood fea-
tures and (2) a global neighborhood feature. The local neighborhood
features are based on the labels of the direct neighbors. Recall that in
our bipartite graph only the labels of the companies are known, and
that the first order neighborhood of each company is composed of its
resources. We define the direct neighborhood of a company as the
company’s resources and their associations. As the number of neigh-
bors for each node differs, the neighborhood labels are aggregated in a
fixed-length feature vector (here: length = 3) (Sen et al., 2008). The
following aggregated features aggr(Ni) are derived from the network
for each company i.
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?

?

a

b

c

Figure 5.3: Time-weighted collective inference algorithm. (a) At time t, two
companies in the subgraph are fraudulent. The intensity of the color refers
to the recency of the fraudulence. (b) Propagation of fraud through the
network by Gotcha!’s propagation algorithm. (c) Cutting the incoming
edges after probing node ‘?’ and confirming its non-fraudulent label.
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• Weighted Sum: the number of fraudulent companies associ-
ated through a similar resource, weighted by the edges.

• Weighted Proportion: the fraction of fraudulent companies
associated through a similar resource, weighted by the edges.

• Weighted Mode: binary indicator whether the neighborhood
is mainly fraudulent or non-fraudulent.

Note that the weighted sum and proportion correspond to the
time-weighted degree and the relative degree in Section 3.3.4. In
order to reduce complexity, no features are included that capture the
neighborhood’s connectivity (e.g., triangles, quadrangles).

If – due to probing companies – the label of one of the neighbors
changes, the local neighborhood is directly impacted. After each
iteration of Algorithm 1, the local neighborhood features are updated.

The global neighborhood feature is inferred using Gotcha!’s prop-
agation algorithm which is more thoroughly discussed in Section 3.3.3.
Figure 5.3a and 5.3b illustrate how fraud propagates through a net-
work.

5.4.2 Probing strategies

Given a set of observations with an estimated label by a local classi-
fier LC, which observation should be probed (i.e., checked for its true
label) such that the predicted label of the other observations are max-
imally improved? Recall that the feature set of each observation from
which the LC estimates the label depends on the neighborhood of that
observation. Any change made in the label of one node has a direct
impact on the feature set of the neighbors. We define five probing
strategies: committee-based, entropy-based, density-based, combined
and random strategy.

(1) Committee-based strategy

Rather than to rely on the decision of one LC, many LCs decide on
which node to pick in a committee-based strategy. An often used
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approach is uncertainty sampling. That is, sample that observation
about which all the members of the committee are the most uncertain.
Our committee is composed of the set of local classifiers ~LC. Each lo-
cal classifier LCm expresses how confident it is in the estimated label
of each observation by means of a probability. Sharma and Bilgic
(2013) distinguishes between two types of uncertainty: most-surely
and least-surely uncertainty. The most-surely uncertain node is that
node for which the estimated probabilities of the local classifiers pro-
vide equally strong evidence for each class. For example, when half
of the committee members vote for fraud, and the other half vote for
non-fraud, we say that the committee is most-surely uncertain about
the node’s label. Least-surely uncertainty refers to that node for which
the estimated probabilities do not have significant evidence for either
class. The committee is least-surely uncertain about a node’s label if
the probability of the node to belong to a class is close to 0.5 for many
classifiers. Based on Sharma and Bilgic (2013), we combine positive
(i.e., belonging to class fraud) and negative (i.e., belonging to class
non-fraud) evidence learned from the set of models. Each local clas-
sifier LCm assigns a fraud estimate to each node x. A model is in favor
for a positive label of node x when Px(+|LCm) > Px(−|LCm), then
LCm ∈ P for node x, otherwise LCm ∈ N . Evidence in favor of node
x being fraudulent is

E+(x) =
∏

LCm∈P

Px(+|LCm)

Px(−|LCm)
(5.3)

Evidence in favor of node x being a non-fraudulent is

E−(x) =
∏

LCm∈N

Px(−|LCm)

Px(+|LCm)
(5.4)

The most-surely uncertain node (MSU) in the set of unlabeled
nodes U is the node which has the maximal combined evidence.

x∗ = argmax
x∈U

E(x) = E+(x)× E−(x) (5.5)

The least-surely uncertain node (LSU) is the node which has the
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minimal combined evidence.

x∗ = argmin
x∈U

E(x) = E+(x)× E−(x) (5.6)

We define four types of committee-based strategies to sample
nodes: (1) most-surely uncertain (MSU), (2) least-surely uncertain
(LSU), (3) most-surely uncertain using the best performing local clas-
sifiers (MSU+) and (4) least-surely uncertain using the best perform-
ing local classifiers (LSU+). We implemented sampling strategy (3)
and (4), as we found that some poorly performing classifiers fail to
appropriately weigh the feature set and distort the results of the uncer-
tainty sampling. Therefore, in MSU+ and LSU+, only well-performing
committee members (i.e., above average precision of all local classi-
fiers) are allowed to vote on the node to be probed.

(2) Entropy-based strategy

Fraud is highly imbalanced, having only a limited set of confirmed
fraudulent nodes available. However, our network exhibits statisti-
cally significant signs of homophily (p-value < 0.02) which indicates
that fraudulent nodes tend to cluster together. Some non-fraudulent
nodes lie on the boundary between a cluster of fraudulent and non-
fraudulent nodes. The entropy-based strategy measures the impurity
of the neighbors’ labels and identifies these nodes that are associated
with a similar amount of fraudulent and non-fraudulent nodes, and

x∗ = argmax
x∈U

Entropy(x)

= −d(2)
rel,x log(d

(2)
rel,x)− (1− d(2)

rel,x) log(1− d(2)
rel,x)

(5.7)

with d
(2)
rel,x the fraction of fraudulent nodes associated with node

x in the second-order neighborhood (i.e., the companies) at time t.

(3) Density-based strategy

Spider constructions are subgraphs in the network that are more
densely connected than other subgraphs. The density-based strat-
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egy aims to find those nodes of which the neighborhood is highly
interconnected.

x∗ = argmax
x∈U

# of observed edges

# of all possible edges
(5.8)

(4) Combined strategy

Based on experts’ expertise, the combined strategy searches for com-
panies that are located in (1) a dense neighborhood (= high density),
and (2) an impure neighborhood (= high entropy). Evidence is ag-
gregated by multiplication (Sharma and Bilgic, 2013). The node with
the maximum value for the combined strategy is selected for probing,
and

x∗ = argmax
x∈U

Combined(x) = Entropy(x)×Density(x) (5.9)

(5) Random strategy

The random probing strategy randomly picks a node in the network
for probing.

Probing strategy (1) does not rely on domain expertise, while (2)-
(4) are guided by experts’ insights. Strategy (5) is employed as base-
line.

5.4.3 Temporal weighing of label acquisition

Based on previous selection technique, the probed node is sent to
inspectors for further investigation. Inspectors will confirm the true
label of the node. Recall that in our setting only companies can
be directly attributed to fraud, resources cannot be passed to the
inspectors for investigation. Inspectors will thus only label company
nodes. At label acquisition, two scenarios can occur for each node
that is probed:

Classified as fraudulent

In this case, the node is added to the bag of fraudulent nodes, and
affects (1) the local neighborhood features of the neighbors, and (2)
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the global neighborhood feature of all nodes. (1) Up until now, the
sampled node was considered to be non-fraudulent. Hence, we locally
update the feature set of the company’s neighbors. (2) The starting
vector of Gotcha!’s propagation algorithm (see Section 3.3.3) is re-
created, treating the node as a fraudulent one. Assume that node x∗

is probed and classified as fraudulent, then

vx∗ = 1

and the starting vector ~z is updated accordingly, such that

~z = ~v � ~d

with ~d the degree vector. The normalized vector is ~znorm. The
global neighborhood feature for each node is then updated by Equa-
tion 3.6.

Classified as non-fraudulent

Inspectors do not find any evidence that this node will be involved in
fraud at time t + 1. However, this does not imply that the node will
always be non-fraudulent. The inspectors’ decision is only valid for a
limited time period. This decision does not impact the local neighbor-
hood features, as the node was treated as non-fraudulent before. It
only temporarily affects the exposure scores computed by Gotcha!’s
propagation algorithm. If we know for certain that node i is legitimate
at time t – based on e.g., inspectors’ labeling – the node should block
any fraudulent influence passing through. By temporarily cutting all
the incoming edges to node i, node i will not receive any fraudulent
influences, and as a result cannot pass fraudulent influences to its
neighbors. The edge weight in the adjacency matrix M is changed as
follows:

∀j ∈ Ni : w(j, i) = (1− e−βd)e−αh (5.10)

with α and β decay values, t the time passed since the decision
that i is non-fraudulent where d = 0 if it is a current decision, and h
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Figure 5.4: Model performance of active inference on time t for probing
strategy MSU+.

is the time passed since a relation between i and j occurred. Remark
that only incoming edges are cut from the non-fraudulent node. The
outgoing edges are still intact. This mitigates the effect of fraud on
its neighbors. This is illustrated in Figure 5.3c.

5.5 Results

Afraid, a new approach for active inference in time-evolving graphs
is applied to a real-life data set obtained from the Belgian Social Se-
curity Institution. We use historical data for evaluation, allowing us
to appropriately interpret results and the value of active inference for
our application domain. We trained five local classifiers (i.e., Logistic
Regression, Random Forests, Naive Bayes, SVM and Decision Tree)
for two timestamps t1 and t2. Due to a non-disclosure agreement, the
exact timestamps of analysis is omitted. The local classifiers ~LC of
time t1 are learned using data features of time t0 and their correspond-



128 5.5. RESULTS

0 20 40 60 80 100

0

0.2

0.4

0.6

k (in %)

P
re

c
is

io
n

of
p

ro
b

ed
n

o
d

es

MSU+ MSU LSU LSU+

Combined Entropy Density Random

Figure 5.5: Precision achieved by the probing strategies.

ing label at time t1. The model is tested on data features of time t1
aiming to predict the corresponding label at time t2. Because inspec-
tion is time-consuming, the number of companies that are passed on
for further inspection is limited. In this problem setting, we focus on
the top 100 most probable fraudulent companies, out of more than
200k active companies, and evaluate model performance on precision,
recall and F1-measure.

Figure 5.4 shows the F1-measure of the local classifiers obtained
when investigating the top 100 most likely fraudulent companies in
function of the percentage of companies labeled of the budget b. Preci-
sion and recall follow a similar pattern, as the total number of compa-
nies that committed fraud between t1 and t2 reaches approximately
200 (< 1%). The probing strategy used is (MSU+). While Naive
Bayes, SVM and Decision Tree are not significantly impacted, the
probing strategy is able to identify nodes that change the top 100
most probable frauds for Logistic Regression and Random Forests.
Although the benefits for Logistic Regression are not pronounced, the
precision achieved by Random Forests increases from 3% up to 15%.
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Figure 5.6: Changes in precision for Random Forests compared to changes
in the evaluation set when using probing strategy MSU+.

Figure 5.5 depicts the precision achieved by the probing strategies
themselves. On average, more than 50% of the probed nodes are
labeled by the inspectors as fraudulent. Considering that there are
only 200 out of 200k companies that commit fraud during the next
time period, this is translated in an increase of approximately 25%
recall. These results indicate that the probing strategy on its own is
a powerful approach to detect many frauds.

Remark that the curves in Figure 5.4 vary a lot. This is mainly
due to the shift in the top 100 companies, depending on which node
is probed. Figure 5.6 illustrates how the changes in precision (black
curve) can be explained by changes in the top 100 most suspicious
companies (gray curve, in %). We distinguish three scenarios, as
indicated in the figure: (A) The sampled node causes an increase
in precision. The sampled node is labeled as non-fraudulent hereby
correctly blocking fraudulent influence to the rest of its neighborhood,
or the sampled node is labeled as fraudulent intensifying the spread
of fraud towards its neighborhood. (B) The sampled node deludes the
CI technique. This can be explained by the innocent resources often
attached to illegal setups. (C) The sampled node does not have any



130 5.5. RESULTS

0 20 40 60 80 100

0.05

0.1

0.15

k (in %)

P
re

c
is

io
n

o
f

th
e

to
p

10
0

MSU MSU+ LSU LSU+

Figure 5.7: Precision of the committee-based probing strategies.

0 20 40 60 80 100

0.04

0.06

0.08

0.1

0.12

0.14

k (in %)

P
re

c
is

io
n

of
th

e
to

p
10

0

Density Entropy Combined Random

Figure 5.8: Precision of the experts-based probing strategies.
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Figure 5.9: Precision when inspectors’ decisions are weighted in time.

influence on the top 100, and can be seen as a lost effort.

Figure 5.7 and 5.8 compare the different probing strategies.
We distinguish between committee-based strategies (Figure 5.7) and
strategies using experts’ experience (Figure 5.8). In general, MSU+,
the Entropy-based and Combined strategy achieve approximately the
same precision. Consistent with the results of Sharma and Bilgic
(2013), the probing strategies LSU and LSU+ do not contribute to
learning, as well as the Density and Random strategy. Surprisingly,
we observed that the MSU strategy which uses all classifiers does not
perform well. When we apply a committee-based strategy composed
of the best members or advanced experts’ strategies (i.e., Entropy-
based and Combined), we achieve the best performance. We can
conclude that a committee of local classifiers can mimic experts’ in-
sights, which is often preferred in order to make unbiased inspection
decisions.

Finally, we evaluate how model performance is affected by cut-
ting the edges, and gradually re-integrating their influence in time.
Figure 5.9 shows the precision at time t2 with and without integrat-
ing the edge cuts of time t1. Especially when the probing budget is
limited, the precision is positively impacted. When more budget is in-
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vested in probing, the effects of transferring decisions of the previous
timestamps are similar to the results achieved when no previous edge
cuts are taken into account. A p-value of < 0.001 shows that if the
budget is lower than 30, the performance is significantly higher when
cutting the edges. If more budget than 30 is used, the difference is
not significant anymore.

5.6 Related Work

Active learning iteratively learns a classifier by selecting unlabeled
observations to be labeled, and update the classifier accordingly. The
label is assigned by an “oracle”, which often refers to human interac-
tion present in the learning process. Although active learning is widely
explored in the literature (see Settles (2009) for an overview), it is only
recently applied to networked data. As network-based features often
rely on the neighbors, an update in the neighborhood causes some fea-
tures to change. This is collective classification, and is proven to be
useful for fraud detection in (Pandit et al., 2007; Akoglu et al., 2013).
Active inference refers to the process of iteratively sampling nodes
such that the collective classification prediction of all other nodes is
optimized. Most studies focus on within-network classification, in
which a subset of the nodes are labeled and the labels of the other
nodes need to be decided. The goal is to select the most informative
(set of) nodes to sample. Rattigan et al. (2007) suggest to select those
nodes for probing that lie central in the network and impact other
nodes more significantly. Macskassy (2009) uses the Empirical Risk
Minimization (ERM) measure such that the expected classification
error is reduced. The Reflect and Correct (RAC) strategy (Bilgic and
Getoor, 2008, 2009) tries to find misclassified islands of nodes by learn-
ing the likelihood of each node belonging to such island. In (Bilgic
et al., 2010), the authors propose alfnet combining both content-
only (or intrinsic) features with features derived from the network.
They use local disagreement between a content-only and combined
classifier to decide which node to probe in a cluster. As opposed to
within-network learning, Kuwadekar and Neville (2011) applied ac-
tive inference to across-network learning. That is, their Relational
Active Learning (RAL) algorithm is bootstrapped on a fully-labeled
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network and then applied to a new unlabeled network. Samples are
chosen based on a utility score that expresses the disagreement within
a ensemble classifier.

5.7 Conclusion

This chapter discussed how active inference can foster classification
in time-varying networks. A new active inference approach for time-
evolving graphs, called Afraid, is applied to a real-life data set ob-
tained from the Belgian Social Security Institution with as goal to
detect companies that are likely to commit fraud in the next time
period. Fraud is defined as those companies that intentionally do
not pay their taxes. Given a time-varying network, we extracted (1)
intrinsic features and (2) neighborhood features. A change in the la-
bel of one node might impact the feature set of the neighbors. This
is collective classification. We investigated the effect on the overall
performance of a set of classifiers, when we are able to select a lim-
ited set of nodes to be labeled. Although the domain requirements
are rather strict (i.e., only 100 out of >200k companies can be in-
vestigated each time period), Random Forests benefit the most from
active inference, achieving an increase in precision up to 15%. We
investigated different probing strategies to select the most informa-
tive nodes in the network and evaluate (1) committee-based and (2)
expert-based strategies. We find that committee-based strategies us-
ing high-performing classifiers result in a slightly better classification
performance than expert-based strategies which is often preferred in
order to obtain an unbiased set of companies for investigation. We
see that the probing strategies on their own are able to identify those
companies with the most uncertainty, resulting in a total precision of
up to 45%.





Chapter 6

Apate: Anomaly
Prevention using
Advanced Transaction
Exploration

In the last decade, the ease of online payment has opened up many
new opportunities for e-commerce, lowering the geographical bound-
aries for retail. While e-commerce is still gaining popularity, it is also
the playground of fraudsters who try to misuse the transparency of
online purchases and the transfer of credit card records. This chapter
proposes Apate, a novel approach to detect fraudulent credit card
transactions conducted in online stores. Apate combines (1) intrin-
sic features derived from the characteristics of incoming transactions
and the customer spending history using the fundamentals of RFM
(Recency - Frequency - Monetary); and (2) network-based features by
exploiting the network of credit card holders and merchants and de-
riving a time-dependent suspiciousness score for each network object.
Results show that both intrinsic and network-based features are two
strongly intertwined sides of the same picture. The combination of
these two types of features leads to the best performing models which
reach AUC-scores higher than 0.98.
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Figure 6.1: Toy example of a credit card fraud network. Weights depict the
recency of the transaction between the merchant and credit card holder.

6.1 Introduction

In recent years, e-commerce has gained a lot in popularity mainly
due to the ease of cross-border purchases and online credit card
transactions. Customers are no longer bound by the offers and
conditions of local retailers, but can choose between a multitude of
retailers all over the world and are able to compare their products,
offered quality, price, services, etc. in just a few clicks. While
e-commerce is already a mature business with many players, security
for online payment lags behind. Recently, the European Central
Bank (ECB) reported that the value of card fraud increased in
2012 by 14.8% compared to the year before ECB (2014). The
main reason is the strong growth in online sales, resulting in many
“card-not-present” transactions (CNP), a means of payment that
catches the attention of illicit people who try to mislead the system
by pretending to be someone else. As a consequence, credit card
issuers need an automated system that prevents the pursue of an
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incoming transaction if that transaction is highly sensitive to fraud,
i.e. the transaction does not correspond to normal customer behavior.

This chapter focuses on automatically detecting online fraudulent
transactions. Data mining offers a plethora of techniques to find pat-
terns in data, distinguishing normal from suspicious transactions. A
key challenge in fraud is to appropriately deal with the atypical char-
acter of fraud. That is, there are many legitimate transactions and
only few evidence of fraudulent transactions to learn from, which com-
plicates the detection process. Carefully thinking about and creating
significant characteristics that are able to capture irregular behavior,
is an essential step in an efficient fraud detection process. In this
chapter, both intrinsic and network-related features are again com-
bined. Intrinsic features analyze the transaction as if it is an isolated
entity, and compare whether the transaction fits in the normal cus-
tomer profile. RFM attributes – Recency, Frequency and Monetary
Value – of the credit card holder’s past transactions are derived to
create those features. Network-based features, on the other hand,
characterize each transaction by creating and analyzing a network
consisting of credit card holders and merchants which are related by
means of transactions. A sample network is given in Figure 6.1. Some
merchants and credit card holders are frequently involved in fraud.

Inspired by Equation 3.6, a collective inference algorithm is devel-
oped to spread fraudulent influence through the network by using a
limited set of confirmed fraudulent transactions and decide upon the
suspiciousness of each network object by deriving an exposure score
– i.e. the extent to which the transaction, the associated account
holder and the merchant are exposed to past fraudulent influences.

Hence, Apate is proposed, a novel, automated and real-time ap-
proach to tackle credit card transaction fraud by mapping past pur-
chasing patterns and customer behavior into meaningful features and
compare those features with the characteristics of a new, incoming
transaction. Supervised data mining techniques are applied to uncover
fraudulent patterns from a real-life credit card transaction data set
obtained from a large credit card issuer in Belgium. Apate complies
with the six-second rule, i.e. within six seconds the algorithm needs
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to decide whether the transaction should or should not be pursued.
This chapter contributes by propping a new propagation algorithm
to propagation fraud from the network edges (i.e., the transactions)
towards all the network components (i.e., the credit card holders and
merchants) and derive for each transaction network-based features.
Those features are combined with a set of intrinsic features to fed
the learning algorithms. The Apate fraud detection model is able
to dynamically adapt to a changing environment and prevents that
fraudsters invent new ways to perpetrate their illegal activities.

Throughout this chapter, the following questions will be an-
swered: (1) Is a new incoming transaction in line with normal
customer behavior, i.e. does it correspond to regular spending
patterns of that customer in terms of (a) frequency or the average
number of transactions over a certain time window (b) recency or
the average time in between the current and previous transaction
and (c) monetary value or the amount spent on that transaction?
(2) Which merchants, credit cards and transactions are sensitive to
fraud? Given past network-based information between merchants
and credit card holders through the transactions made, how can a
suspiciousness score be derived for (a) merchants indicating which
merchants are often related to fraud, and as a consequence, form a
risk of pursuing future fraudulent transactions; (b) credit card holders
who act irregularly or whose credit card is stolen and (c) transactions
by combining evidence of the associated credit card holder and mer-
chant; (3) Does Apate, a new detection approach which combines
both intrinsic and network-based features, significantly boost the
performance over traditional intrinsic-only models, and if so, which
specific set of features contribute in detecting efficiently fraud?

We propose Apate (short for: Anomaly Prevention using
Advanced Transaction Exploration), a novel, automated and real-
time approach to tackle credit card transaction fraud by mapping
past purchasing patterns and customer behavior into meaningful
features and compare those features with the characteristics of a
new, incoming transaction. Supervised data mining techniques are
applied in order to uncover fraudulent patterns from a real-life credit
card transaction data set obtained from a large credit card issuer
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in Belgium. This approach complies with the six-seconds rule, i.e.
within six seconds the Apate algorithm needs to decide whether
the transaction should or should not be pursued. We contribute by
proposing a new propagation algorithm to propagate fraud from the
network edges (i.e., the transactions) towards all the network compo-
nents (i.e., the credit card holders and merchants) and derive for each
transaction network-based features. Those features are combined
with a set of intrinsic features to feed the learning algorithms. The
developed fraud detection model is able to dynamically adapt to a
changing environment and continues to operate under the condition
that fraudsters invent new ways to perpetrate their illegal activities.

The remainder of this chapter is organized as follows. The credit
card fraud domain is introduced in Section 6.2. Section 6.3 discusses
the proposed methodology, and focuses on intrinsic and network-based
feature extraction (Sections 6.3.1 and 6.3.2). In Section 6.4, the ob-
tained results are summarized and analyzed more thoroughly . Sec-
tion 6.5 concludes this chapter.

6.2 Credit Card Transaction Fraud

6.2.1 Background

Credit card fraud detection is a widely studied research domain.
Bhatla et al. (2003) and Delamaire et al. (2009) distinguishes between
various types of fraud like application fraud (i.e., acquiring a credit
card with false information), stolen or lost card, counterfeit card (i.e.,
card copying or using a card which does not belong to the owner) and
card-not-present (CNP) fraud (i.e., using credit card details to make
distance purchases). This chapter focuses on CNP fraud perpetrated
through online credit card transactions.

As manually processing credit card transactions is a time-
consuming and resource-demanding task, credit card issuers search
for high-performing and efficient algorithms that automatically look
for anomalies in the set of incoming transactions. Data mining is a
well-known and often suitable solution to big data problems involving
risk such as credit risk modelling (Baesens et al., 2003a), churn predic-
tion (Verbeke et al., 2011) and survival analysis (Backiel et al., 2014).
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Nevertheless, fraud detection in general is an atypical prediction task
which requires a tailored approach to address and predict future fraud.
According to Definition 3.1, fraud is an uncommon, well-considered,
imperceptibly concealed, time-evolving and often carefully organized
crime which appears in many types and forms. Each property holds
for credit card fraud:

• Uncommon The number of legitimate transactions outnum-
bers the number of fraudulent transactions drastically. Many
credit card fraud detection studies report a fraud ratio of less
than 0.5% (see Table 6.1).

• Well-considered Once fraudsters find a way to swindle, they
exploit it until that type of fraud is discovered and prevention
actions are taken. Extracting the right features and minimizing
the opportunities of fraudsters to perpetrate fraud without being
caught is an essential step in the fraud detection process.

• Imperceptibly concealed Fraudulent transactions often ex-
hibit the same characteristics as legitimate transactions. Maes
et al. (2002) formulated this as the presence of overlapping data.
While many studies solely focus on customer profiling – intra-
account equivalence, i.e. the extent to which the current behav-
ior differs from previous customer behavior – models should take
advantage of the knowledge sprouted from previous accounts
used by fraudsters and compare this with currently legitimate
customer – inter-account equivalence, i.e. the extent to which
the customer profile differs from fraudulent profiles.

• Time-evolving An efficient fraud detection process is dynamic.
There are two reasons. First, fraudsters change their way of
working. Models should be fed with the most recent data to
capture new types of fraud, and at the same time, should be
able to prevent “existing” fraud. Second, customer changes in
lifestyle might affect the spending patterns. Models that con-
trast a new transaction against the customer’s transaction his-
tory mark changes in spending patterns as suspiciously.

• Carefully organized Once a credit card is stolen, it is used in
many fraudulent transactions. Analogously, certain merchants
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are more sensitive to fraud – merchants that perpetrate fraud by
themselves or that are easily accessible by fraudsters. Efficient
detection models need to exploit the relational structure among
credit card holders and merchants.

Each of the aforementioned requirements need to be addressed
before a detection model can efficiently work in practice. In the re-
mainder of this chapter, a solution is formulated that systematically
incorporates all of these requirements.

6.2.2 Credit Card Fraud Detection Process

The credit card detection process is summarized in Figure 6.2. The
ultimate goal of such detection processes is to prevent the pursue
of all transactions that do not comply with the imposed regulari-
ties. When a new transaction arrives in the system, a series of accep-
tance checks is performed. The transaction processing system checks
for example whether the user entered the right PIN or whether the
spending amount is yet sufficient. If the transaction clears the ac-
ceptance checks, it is passed on to the sanity check of the detection
system. Here, the system computes the probability that the transac-
tion is fraudulent, e.g. by applying a detection model learned from
past transactions. If the probability exceeds a certain threshold, the
transaction does not proceed and is aborted. The sanity check has
both an on-line (i.e., in real time) and off-line module. The data set
under consideration consists of all processed transactions by World-
line Belgium. A transaction is fraudulent if the transaction does not
pass the (a) on-line or (b) the off-line sanity check, or (c) by customer
notification. While (a) is known in real-time, (b) and (c) can take up
to one week.

The on-line detection process is liable to the “six-seconds rule” of
decision. This means that both the acceptance check and the on-line
sanity check need to be processed within six seconds. Apate operates
as part of the sanity check, and can be implemented both in an on-line
as an off-line environment.
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# Reference Detection Technique Method Fraud Ratio

1 (Bolton and Hand, 2001) Peer group analysis and break point analysis U N.A.

2 (Zaslavsky and Strizhak, 2006) Self-organizing maps (SOM) U N.A.

3 (Quah and Sriganesh, 2008) Self-organizing maps (SOM) U N.A.

4 (Weston et al., 2008) Peer group analysis U N.A.

5 (Ghosh and Reilly, 1994) Neural networks S ?

6 (Aleskerov et al., 1997) Neural networks S ?

7 (Dorronsoro et al., 1997) Neural networks S 0.6%

8 (Stolfo et al., 1997) Meta-learning S 20%

9 (Brause et al., 1999) Neural networks in combination with a rule-based associ-
ation system

S 0.2%

10 (Chan et al., 1999) Meta-learning S 20%

11 (Wheeler and Aitken, 2000) Case-based reasoning S 14%

12 (Maes et al., 2002) Neural nteworks and Bayesian belief networks S ?

13 (Syeda et al., 2002) Fuzzy neural networks S ?

14 (Shen et al., 2007) Decision trees, neural networks and logistic regression S 0.07%

15 (Srivastava et al., 2008) Hidden Markov Model S ?

16 (Whitrow et al., 2009) Transaction aggregation using a variety of models S ?

17 (Sánchez et al., 2009) Association rules S 0.3%

18 (Bhattacharyya et al., 2011) SVM, Random Forests and logistic regression S 0.5%

19 (Duman and Elikucuk, 2013) Migrating Birds Optimization and GASS algorithm (ge-
netic algorithm)

S <0.01%

20 (Bahnsen et al., 2013) Bayes Minimum Risk S 0.025%

21 (Dal Pozzolo et al., 2014) Multiple models S 0.4%

22 (Bahnsen et al., 2014) Bayes Minimum Risk S 0.025%

Table 6.1: Overview of published papers in the credit card fraud detection
domain.

6.2.3 Related Work

Although fraud detection in the credit card industry is a much-
discussed topic which receives a lot of attention, the number of pub-
licly available works is rather limited. One of the reasons is that
credit card issuers protect the sharing of data sources and most al-
gorithms are produced in-house concealing the model’s details. An
overview of the literature is given in Table 6.1. In particular, credit
card fraud detection techniques can be divided into two broad cate-
gories: supervised (S) and unsupervised (U) methods. Unsupervised
methods solely use the customer (or transaction) characteristics to
group them into small, similar clusters while maximizing the differ-
ence between the extracted clusters. If a new transaction of a certain
customer is not allocated to the normal customer group, then an alarm
is raised for that transaction (Bolton and Hand, 2001). Unsupervised
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techniques include peer group analysis (Bolton and Hand, 2001; We-
ston et al., 2008) and self-organizing maps (Zaslavsky and Strizhak,
2006; Quah and Sriganesh, 2008). More studies focus on supervised
techniques using evidence of past fraudulent transactions to infer the
suspiciousness of future transactions. The most prevalent technique
for supervised credit card fraud detection is artificial neural networks
(ANN’s) (Ghosh and Reilly, 1994; Aleskerov et al., 1997; Dorronsoro
et al., 1997; Brause et al., 1999; Maes et al., 2002; Syeda et al., 2002;
Shen et al., 2007). While ANN’s generally achieve a high performance,
they are black box models which lack interpretability. Recently, the
use of ensemble methods like Random Forests is found to perform well
in credit card fraud (Whitrow et al., 2009; Bhattacharyya et al., 2011;
Dal Pozzolo et al., 2014). Random Forests work especially well when
there are many input features to learn from, which is often the case
in network-related classification problems (Henderson et al., 2011).
Other techniques for supervised learning in fraud are meta-learning
(Chan et al., 1999), case-based reasoning (Wheeler and Aitken, 2000),
Bayesian belief networks (Maes et al., 2002), decision trees (Shen
et al., 2007), logistic regression (Shen et al., 2007; Bhattacharyya
et al., 2011), hidden Markov models (Srivastava et al., 2008), asso-
ciation rules (Sánchez et al., 2009), support vector machines (Bhat-
tacharyya et al., 2011), Bayes minimum risk (Bahnsen et al., 2013,
2014) and genetic algorithms (Duman and Elikucuk, 2013).

An important element in credit card fraud detection is the deriva-
tion of useful and meaningful features. Ghosh and Reilly (1994);
Sánchez et al. (2009); Whitrow et al. (2009); Bhattacharyya et al.
(2011); Bahnsen et al. (2013); Dal Pozzolo et al. (2014) defined three
sets of features: (1) current transaction descriptors such as amount,
type and timestamp of transaction, country of purchase, merchant
info, etc.; (2) transaction history descriptors like number of transac-
tions in last hour, amount spent on the transactions, typical merchant
group, etc.; (3) client descriptors, like spending limit, gender, region,
etc.

As no client information is available, only features from categories
(1) and (2) are extracted which are enriched with network-based vari-
ables, exploiting the interrelationships between credit card holders
and merchants.
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Figure 6.3: Apate’s re-estimation process of the detection models using a
sliding window.

6.3 Proposed Methodology

In this section, we discuss how the Apate detection process is
implemented. Note that the detection process comprises the sanity
check as illustrated in Figure 6.2. Particularly, starting from a list
of time stamped, labeled transactions, a model is learned to infer
future fraudulent transactions. As fraud detection models should
adapt dynamically to a changing environment, a sliding time window
is introduced to characterize a transaction based on current (i.e.,
short term), and normal (i.e., medium and long term) customer’s
past behavior. Both intrinsic and network-based features are derived
using those three time windows. Since model estimation often cannot
be executed within six seconds, the detection models are re-estimated
on a daily basis at midnight the day before. Transactions made
during the next day are evaluated using the model trained on data of
the day before. The transaction features are extracted at real-time
and fed into the model. This is depicted in Figure 6.3.

The Apate fraud detection process consists of two featurization
steps:
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1. Intrinsic feature extraction How does the incoming trans-
action differ from the previous transactions performed by that
credit card holder?

2. Network-based feature extraction Apate exploits the rela-
tionships between credit card holders and merchants by means
of transactions. The set of network-related features measures
the exposure of each network object to fraud.

All features are summarized in Table 6.2. Remark that the trans-
action features are independent of the time window. In the remainder
of this section, the featurization process of Apate to create intrinsic
and network-based features is discussed in more details.

6.3.1 Intrinsic Feature Extraction

Traditionally, attempting to predict fraud using supervised data min-
ing has been supported by the characterization of the purchase pat-
terns that the customers present previous to the fraud event (Bhat-
tacharyya et al., 2011). Most models are constructed using an aggre-
gation of the transactions and their value. Krivko (2010) uses both
the number of transactions and the monetary value of them to esti-
mate rolling windows that are then used to train the model, Whitrow
et al. (2009) use several aggregation techniques on the data and study
the effects of the aggregation on the results, and Jha et al. (2012)
construct a detailed data set that contains several transaction ag-
gregations, plus information on the country in which the transaction
occurred, to name a few. The literature seems to agree that there
are three conditions that assist in predicting fraud: the transaction
details, the time framework, and the location in which they occur.

Following this, the first set of variables that is proposed for study-
ing this problem are a mixture of literature variables, plus some other
indicators that arose during research which refers to the characteris-
tics of the transactions themselves. Variables are construction by us-
ing inspiration from transaction analysis, including all variables that
could be replicated from the studies in the literature. These variables
include the number of transactions that occur in a given time frame-
work (frequency), the amount of money spent in those transactions
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Summary statistics
Variable Description ST MT LT

µ σ µ σ µ σ

Transaction features
Location (dummy) Issuing region

Belgium 0.16 0.37
EU 0.76 0.43

MC Category (dummy) Category sensitivity to fraud
Low 0.67 0.47
Medium 0.31 0.47

Amount Amount of transaction 78.7 202.9
Recency Time passed since last transaction

MC at the merchant 8.95 13.01 235.69 417.62 2483.8 2887.5
MC Category at the merchant category 8.97 13.04 232.9 415.2 2652.03 2988.6
Global across all transactions 10.31 14.39 318.3 455.8 2996.4 3011.0
Country in the same country 9.29 13.63 242.6 420.1 2582.0 2950.7
Currency with the same currency 9.99 14.13 292.9 446.4 2957.6 3034.2

Frequency Total number of transactions
MC at the merchant 0.12 0.70 0.25 1.54 0.85 5.85
MC Category at the merchant category 0.13 0.74 0.28 1.63 0.92 6.11
Global across all transactions 0.23 1.53 0.52 2.62 1.82 9.99
Country in the same country 0.17 0.98 0.37 2.09 1.27 9.48
Currency with the same currency 0.19 1.04 0.42 2.18 1.52 9.79

Monetary Value Average amount of transactions
MC at the merchant 5.24 120.84 9.64 158.21 30.08 558.6
MC Category at the merchant category 6.54 139.09 13.39 198.45 47.05 783.66
Global across all transactions 18.49 259.54 60.1 1083.7 288.63 7041.3
Country in the same country 11.56 199.12 43.26 1002.4 227.67 6619.9
Currency with the same currency 13.57 220.06 50.45 1068.8 261.9 7033.4

Event occurrence First purchase?
MC at the merchant 0.93 0.24 0.89 0.30 0.80 0.40
MC Category at the merchant category 0.93 0.26 0.89 0.32 0.78 0.41
Global across all transactions 0.89 0.31 0.80 0.40 0.52 0.50
Country in the same country 0.91 0.29 0.86 0.35 0.72 0.45
Currency with the same currency 0.90 0.30 0.83 0.38 0.60 0.49

Average Transactions Average per time frame and level
Global across all transactions 78.5 181.09
Merchant at the same merchant 78.3 199.26

Exposure Score Extent to which transaction (TXN),
merchant (MC) and credit card
holder (CCH) are influenced by fraud
given the network.

Transaction (TXN) 0.11e-2 0.018 0.46e-3 0.45e-2 0.40e-4 0.29e-3
Merchant (MC) 0.063 0.500 0.092 0.390 0.141 0.259
Credit card holder (CCH) 0.26e-4 0.85e-2 0.34e-4 0.36e-2 0.27e-4 0.76e-3

Table 6.2: Summary of input features on short (ST), medium (MT) and long (LT) term.
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(monetary value), and the time between two subsequent transactions
in a particular time period if any (recency).

The variables fit within the Recency - Frequency - Monetary Value
(RFM) framework, which is widely used in marketing (Blattberg et al.,
2008). There is no agreement in the literature regarding which one
is an appropriate time framework to estimate these variables, ranging
from hourly to averages over three months, this chapter studies both
short, medium and long term: the last hour of transactions (attempt-
ing to capture cards that are heavily used and then dropped), the
last day of transactions (attempting to capture specific, consumption-
prone days), and the last week of transactions (attempting to capture
the normal behavior of the customer). As will be shown in the exper-
imental part (Section 6.4), only one month of transactions are avail-
able, so analysis of longer time periods were not possible. Jha et al.
(2012) suggests that useful information can be extracted regarding the
merchant at which the purchases occur. Data that is available, and
that will be used to aggregate the merchants, concerns the merchant
itself, a gross category in which the spending occurs (i.e. supermar-
kets, clothing stores, etc.), and an aggregated global variable with all
merchants. The literature (e.g., (Bhattacharyya et al., 2011)) seems
to suggest that performing the RFM analysis segmented by the cur-
rency and the country in which the transactions occurred would also
bring information relevant to the study.

An additional set of binary variables was created to mark for when
no purchase has occurred. These variables (FirstPurchase) mark if the
transaction is the first one in that measured time frame, for each of
the dimensions that are measured (see Table 6.2). This information
is relevant mostly to a generalized linear model such as logistic re-
gression, as discussed in Allison (2001). We construct 15 variables
accounting for each level of aggregation and time period.

In summary, using three time periods, three types of RFM vari-
ables, and five types of transaction aggregations (single merchant, cat-
egory, country, currency and global), a set of 60 (3×3×5+3×5) vari-
ables aggregating the past transactions is developed. All variables
have the following naming scheme: Level of Aggregation, RFM Type,
Time Period. So for example, GlobalRecencyHour refers to the Re-
cency (time between consecutive purchases) within one hour, when
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Region % of Transactions % Fraudulent

Belgium 16.13% 0.05%
European Union 75.39% 0.45%

ROW 8.48% 5.36%

Total 100% 0.78%

Table 6.3: Transactions per Region and Fraud Percentage.

considering all available merchants.

The second step is to characterize the transaction itself using the
location in which it occurred and the merchant info. Given the char-
acteristics of the European credit card users, there is a strong pattern
of credit card use European Union-wide, rather than in the country
where the card is emitted. Transactions that occur outside the EU
(mostly in the US) are rarer. Dummy variables for these three zones
(EU, Belgium, and Rest-of-World, ROW) are able to capture this
information. Table 6.3 shows relevant information supporting this
segmentation for the data set available for this work.

We completed this part of the data set with the variables from
the literature that do not fit the RFM framework. There were some
variables from the literature which could not be implemented in this
study, given the availability of data: some works in the literature use
three months of data Bhattacharyya et al. (2011), but only one month
is provided so it was impossible. Also, only online transactions of
one issuer were available, so bank-related and POS related variables
are not applicable, such as in Sánchez et al. (2009) and Whitrow
et al. (2009). Dummy variables are included representing the currency
in which the transaction occurred, categorizing them in euros, US
dollars, and other currencies. We also included variables regarding the
average amount of the transactions during the last week, as suggested
by Bhattacharyya et al. (2011) and Whitrow et al. (2009), which were
estimated both at global transaction level and at merchant level.

The last set of constructed variables deals with the categories
of merchants. The data provider manifested that there were suspi-
cions that fraudulent transactions tended to accumulate in certain
categories. Using this information, the available categories (19) were
segmented into three large categories using the individual categories’
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Figure 6.4: Adjacency matrix of the bipartite graph (a), transformed
bipartite-to-unipartite graph (b) and transformed tripartite-to-unipartite
graph (c).

fraud percentage. This leads to three dummy variables (CategoryLow,
CategoryMid, and CategoryHigh) capturing this assumption.

After constructing the data set along the intrinsic (transaction re-
lated) variables, the information is complemented by exploring a novel
approach of network analysis, as described in the next subsection.

6.3.2 Network Feature Extraction

Network definition

A graph that represents heterogeneous node types, is a multipartite
graph. In particular, the credit card fraud network in this work is
represented as a bipartite graph G(V1,V2, E), containing two node
types – i.e. credit card holders and merchants – and satisfies the
following property:

e(v1, v2) subset of V1 × V2 (6.1)

with v1 ∈ V1 the set of credit card holder nodes, and v2 ∈ V2
the set of merchant nodes. Property 6.1 enforces that a transaction
can only exist between different node types, i.e. credit card holders
and merchants. A toy example of the credit card network is shown in
Figure 6.1.

The corresponding adjacency matrix Ac×m = (ai,j) of a bipar-
tite graph is a matrix of size c ×m with c and m the total number



Apate: Anomaly Prevention using Advanced Transaction Exploration 151

Credit Card 
Holder

Merchant

t1 2t

3t 4t

t5

Figure 6.5: Example of a multi-edge subnetwork. The credit card holder
made several transactions at the same merchant.

of credit card holder and merchant nodes respectively. The weight
matrix Wc×m = (wi,j) represents the weighted graph as a matrix.

In order to address the dynamic character of fraud, we integrate
time into the network such that the edges express the recency of the
transaction. Inspired by the half-life decay of atoms, we exponentially
decay the intensity of a relationship in time, where:

{
wi,j = e−γh if a relationship exists between node i and j
wi,j = 0 otherwise

with γ the decay constant and h the time passed since the transac-
tion pursued, measured according to the interval being studied (min-
utes for short term, hours for medium term and days for long term).
The decay constant γ is chosen such that the edge weight is close to
zero after one month (long-term: γ = 0.0001), one week (medium-
term: γ = 0.004) and one day (short-term: γ = 0.03) respectively. A
high weight represents a recent transaction. An example of a bipartite
adjacency matrix is shown in Figure 6.4a.

We note that multiple transactions can occur between the same
credit card holder and merchant. In that case, we say that the graph
has multi-edges between two nodes. This is depicted in Figure 6.5. As
adjacency matrices only represent the intensity between two nodes as
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if they were connected by one edge, multi-edge information is often
aggregated (e.g., sum, max, mean, etc.).

Network fraud propagation

Given a credit card network, how can we use the fraud label of the
edges – i.e. the transactions – to infer a score for each network object?
That is, we want to infer a score for each credit card holder, merchant
and transaction. The derived score expresses the extent to which the
network object is exposed to fraud, and is therefore called the exposure
or suspiciousness score.

So far, all studies start from a limited set of labeled nodes, and
infer a ranking for the remaining nodes. This chapter proposes a
propagation algorithm that start from a limited set of labeled edges
in order to label the remaining network objects.

Remark that Chapter 3 (see Section 3.3.3) introduced Gotcha!’s
fraud propagation algorithm for social security fraud to analyze bipar-
tite graphs. Gotcha!’s propagation algorithm is an iterative fraud
scoring algorithm that is designed such that it scores two node types
(cfr. bipartite graphs) based on the label of one node type. Assume
that a graph consists of c type-one nodes and m type-two nodes. After
k iterations, the vector containing the exposure scores of each node
equals:

~ξk = α ·Qnorm · ~ξk−1 + (1− α) · ~znorm (6.2)

with ~ξk the (c+m)-vector containing the exposure scores of each
node after k iterations, ~ξ0 a random vector with values between [0, 1],
(1 − α) the restart probability (according to Page et al. (1998), we
choose α = 0.85), Qnorm the column-normalized weight matrix of
size ((c + m) × (c + m)), and ~znorm the normalized degree-adapted
starting vector of size (c+m). Both Qnorm and ~znorm are weighted
in time to address the dynamic characteristic of fraud. The bipartite
adjacency matrix as illustrated in Figure 6.4a is transformed into a
symmetric, unipartite matrix with qi,j = 0 if node i and j are both
credit card holders or merchants (see Figure 6.4b)

Equation 6.2 starts from a limited set of labeled nodes to infer
a score for the remaining nodes. However, in credit card fraud, we
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Figure 6.6: Transformation process from a bipartite to a tripartite graph by
representing the edges as a separate node in the network.
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require to start from a limited set of labeled edges to derive a score for
both the edges and nodes. Therefore, Apate’s network propagation
algorithm adapts Equation 6.2 by making two changes: (1) Qnorm is
transformed into a tripartite graph including transactions as a node in
the network; (2) ~znorm is a time-dependent normalized vector indicat-
ing the fraudulent transactions. These adaptations are discussed next.

(1) Edge-to-node transformation
In order to be able to propagate influence from edges, the edges

are included as a separate entity in the network. That is, the edges are
transformed into nodes and create a tripartite graph G(V1,V2,V3, E)
with E ⊆ (V1×V3)∪(V2×V3), such that the following property holds:

∀ v3 ∈ V3 : ∃! v1 ∈ V1 | e(v1, v3) ∈ E
&∃! v2 ∈ V2 | e(v2, v3) ∈ E . (6.3)

with v1 ∈ V1 the set of credit card holder nodes, v2 ∈ V2 the set of
merchant nodes and v3 ∈ V3 the set of transaction nodes. Property 6.3
enforces that credit card holder nodes and merchant nodes can only
be connected to transaction nodes. An example transformation is
illustrated in Figure 6.6. We note that the edge weight in the tripartite
graph between the transaction and both the credit card holder and
merchant is equal to the edge weight between the credit card holder
and the merchant in the original bipartite graph Wc×m. Let’s say that
c, m and t are the total number of credit card holder nodes, merchant
nodes and transaction nodes respectively, then the weighted matrix
M(c+m)×t is the mathematical representation of the tripartite graph
which is exponentially decayed over time, and

{
wi,j = e−γh if a relationship exists between node i and j
wi,j = 0 otherwise

Adding the transactions as separate nodes in the graph, enables
us to easily integrate multi-edges from the bipartite graph into the
tripartite graph. As each transaction edge in the bipartite graph
is transformed into a transaction node in the tripartite graph, the
weighted matrix creates for each transaction node a separate column.
There is no need to aggregate multi-edge information.
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As Equation 6.2 requires a symmetric matrix, the tripartite graph
is transformed into a symmetric unipartite graph, as illustrated in
Figure 6.4c. Mathematically,

Qtri =

(
0(c+m)×(c+m) M

M ′ 0t×t

)
(6.4)

Matrix Qtri is a matrix with c + m + t rows and columns. After
normalizing the columns such that each column sums up to 1, the
resulting matrix is Qtri

norm.

(2) Starting vector

The starting vector is originally created to personalize the ranking
of web pages by guiding the algorithm with the user’s interests Page
et al. (1998). Rather than initializing the starting vector as a
uniformly distributed vector, the starting vector can be used to
emphasize the influence of certain nodes on the final ranking. The
same reasoning holds for fraud. As we are not interested in any
influence to propagate through the network, but only in fraudulent
influence, we guide the algorithm by specifying the confirmed fraud-
ulent transactions using the starting vector. That is, the starting
vector ~z tri of size (c+m+ t) equals:

{
ztri
i = e−βh if node i is a fraudulent transaction
ztri
i = 0 otherwise

with β the decay constant, and h the time passed since the trans-
action is labeled as fraudulent. Dependent on the time window of
analysis, the fraudulent influence is exponentially decayed on long
(β = 0.0001), medium (β = 0.004) or short (β = 0.03) term. All
credit card holder and merchant nodes have a zero weight for the
starting vector. Remark that a higher weight is assigned to fraudu-
lent transactions that occurred more recently.

The starting vector is normalized to ~z tri
norm, summing up to 1.

Using the previous modification to the bipartite propagation al-
gorithm as stated in Equation 6.2, we derive Apate’s propagation
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algorithm for edge and node labeling, where:

~ξk = α ·Qtri
norm · ~ξk−1 + (1− α) · ~z tri

norm (6.5)

The resulting score ~ξk is computed using the power-iteration
method, iterating until convergence. Convergence is reached after a
maximum number of iteration steps or when the change in the scores
is marginal.

Feature extraction

As a long-, medium- and short-term time window is used in the anal-
ysis, matrix Qtri

norm and ~z tri
norm in Equation 6.5 are computed with

different α values (α = 0.0001, 0.004, 0.03) to infer an exposure score
of each node and edge using information up until one month, week
and day respectively. For example, the long-term exposure score indi-
cates the extent to which the transaction (or merchant, or credit card
holder) is sensitive to fraud during the last month. In general, the
higher the exposure score of a network object, the more the node or
edge is surrounded by fraud in its neighborhood.

For each new incoming transaction, the following features are
computed: (a) credit card holder exposure score (CCHScore), (b)
merchants exposure score (MCScore) and (c) transaction (TXScore)
exposure score on long (LT), medium (MT) and short (ST) term. We
re-estimate the exposure scores for every network object each day at
midnight in order to extract the evidential features for transactions
that occur the next day.

The credit card holder and merchant exposure score are derived
from Equation 6.5. If the credit card holder or merchant did not yet
appear in the network – i.e., he/she did not perform any transaction
during the time period of analysis – a score of zero is assigned to that
node, as they are not yet exposed to fraudulent influences.

The transaction exposure score combines the influence of the as-
sociated credit card holder and merchant. If a transaction already
occurred between the credit card holder and the merchant, the ex-
posure score as calculated in Equation 6.5 is used. If multiple trans-
actions occurred between the same credit card holder and merchant,
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Figure 6.7: Local updating process when new transaction appears in the
network.

we use the score assigned to the most recent transaction. When a
transaction did not yet happen between a certain credit card holder
and merchant, the exposure score of that transaction is computed by
using the exposure scores of its direct neighborhood. Therefore, we
say that the exposure scores are locally updated in the network,
where:

TXNi,k,score =
1∑n

j=1wi,j + 1
CCHi,score +

1∑m
j=1wk,j + 1

MCk,score

(6.6)
with TXNi,k,score the exposure score of a transaction between

credit card holder i and merchant k, CCHi,score the exposure score of
credit card holder i, MCk,score the exposure score of merchant k, wx,y
the link weight between node x and y, and n and m the total number
of links from credit card holder i and merchant k respectively. The
local updating algorithm redivides the fraudulent influences. Instead
of propagating the exposure score of the credit card holder/merchant
only among the past transactions, the exposure score is now partly
absorbed by the newly added transaction. We note that the edge
weight of the new transaction is set to 1, as it represents a current
relationship. This is depicted in Figure 6.7.

The network feature extraction step results in 9 features for each
transaction: long-, medium- and short-term exposure scores for the
transaction, associated credit card holder and merchant.
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In the following section, analytic models are estimated using three
sets of variables: intrinsic (18), network-based (9) and demographics
(5); and measure the capabilities they have for predicting fraud. In
all cases, the objective is to estimate the probability of fraud given
the variables available, that is:

P (Y = fraud|XIntrinsic, XNetwork, XDemographics) (6.7)

6.4 Results

To test the proposed approach, a unique data set of approximately
3.3M transactions from a large Belgian credit card issuer has been
used. The data consists of a supervised data set with all the informa-
tion related to transactions occurring during five consecutive weeks,
plus a fraud or no fraud mark added for each transaction by the com-
pany after suspicious transactions were investigated (after two weeks
at most). The data set is highly imbalanced, with only 48 000 frauds
among the transactions (< %1).

In this section, the following three questions are answered: What
is the best model for the approach? How can the model be applied
in a real life-situation? And finally, what is the added value of using
network variables for this problem? For all questions, an out-of-time
test set is created consisting of all transactions that occur in the last
week (approximately 500k), while the first two weeks will be used as
the data pool for creating the RFM and network variables for the
following two weeks of data (the training set).

During data cleansing and pre-processing, all transactions that
were rejected due to normal banking reasons (wrong PIN, input er-
rors, and other non-purchase related reasons) were eliminated from
the data set. These transactions account for 15% of all transactions.
Additionally, all transactions over 5000 EUR were also dropped from
the data set, to avoid distortions in the set. These transactions are
clear outliers: they consist of less than 1% of all transactions (none of
them fraudulent) and they were almost 25 standard deviations from
regular transactions, as shown in Table 6.2, so eliminating them leads
to more stable models. The final training set consists of 2.2M trans-
actions, and the final test set consists of 500k transactions. For each
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case, the variables described in Section 6.3 are calculated, account-
ing for 78 different variables, 9 which are network-based, 60 RFM
variables, and the remaining variables being the non-RFM literature
variables, or demographic and location-related.

6.4.1 Prediction Results

According to the findings of related research (see Section 6.2.3), three
models will be benchmarked to each other: logistic regression, the
standard general linear model for classification used in many bank-
ing related activities, which is the less powerful of the group in terms
of predictive capabilities, but is very simple to understand; a feed-
forward, one hidden layer, neural network, one of the most powerful
non-linear models, but that is considered a black box; and a Random
Forest, a very powerful ensemble of decision trees which has brought
very good results in many publications dealing with multiple applica-
tions.

To tackle the imbalance problem, standard case weighting for neu-
ral networks and logistic regression is applied. For Random Forests,
the sub-sampling capabilities of Random Forests are used, with each
tree constructed using all fraudulent transactions and a randomly
selected subset of the non-fraudulent ones such that they account
for two times the number of fraudulent ones, as explained in Chen
et al. (2004a). The Random Forests model is trained using 500
trees, which gives non-fraudulent cases an a priori chance of being
selected similar to the one of simple random sampling. For parame-
ter tuning, in the case of neural networks, 20% of the training data
set was reserved for tuning the parameters, selecting the best com-
bination of epochs and number of neurons over the grid given by
(Neurons,Epochs) ∈ [16, 156]×[100, 1000], with the epochs increased
in increments of 50, and the neurons in increments of one.

Model AUC Accuracy

Logistic Regression 0.972 95.92%
Neural Networks 0.974 93.84%
Random Forests 0.986 98.77%

Table 6.4: Comparison of models.
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Figure 6.8: ROC Curve for Different Models.

The results, in Table 6.4, show a very high accuracy and Area-
Under-the-ROC-Curve (AUC) values. The models are almost per-
fect, correctly predicting 98.7% of cases in the case of the R Random
Forests (the highest value), and with an AUC of 0.987. The rela-
tively lower accuracy in the other two models is caused by a higher
fraud detection rate when contrasted with false positives: the models
are good at detecting frauds, but that comes at a cost of some extra
non-fraudulent transactions being detected as fraudulent, which does
not occur with Random Forests. This hits accuracy given the high
imbalance of the data set. The very high AUC obtained can be seen
in Figure 6.8.

To make a fairer comparison, possibly closer to a real application of
the model, we will study the case when at most a 1% false positives are
acceptable. The rationale behind this is that there is a reputational
cost whenever a false positive occurs, given that users of the credit
card will get a rejection on a non-fraudulent transaction, with all the
consequences and annoyances that such an action brings. Table 6.5
shows the obtained results.

The results continue to be very good, but now the effects of the
highly imbalanced problem are apparent. Random Forests is the best
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Model Cut-Off Balanced Acc. Specificity

Logistic Regression 0.85 87.4% 75.7%
Neural Networks 0.99 87.9% 76.8%
Random Forests 0.53 93.2% 87.4%

Table 6.5: Accuracy and AUC (test set) at 1% Maximum False Positive
Rate.

model overall, with an 87.4% accuracy in the positive (fraudulent)
cases, and a balanced accuracy of 93.2%. It is followed by neural
networks, with a 76.8% specificity. The results hint at a highly non-
linear problem, since there is a clear advantage when using non-linear
models, which can be as large as the 12% increase in specificity when
comparing Random Forests with logistic regression. The difference
between neural networks and Random Forests also suggests that the
problem is not only highly non-linear, but that it is necessary to apply
an ensemble model that searches for patterns in the sub-spaces that
arise when applying a Random Forest. In any case, the results are
very good. A user could use the model and detect close to 90% of all
fraudulent transactions, flagging incorrectly only 1% of non-fraudulent
ones.

6.4.2 Variable Importance and Network Variable Im-
pact

Type AUC Accuracy

Only RFM 0.953 97.83%
Literature 0.955 97.87%

All Variables - First transaction 0.971 99.46%
Only Social Networks 0.920 94.37%

All variables 0.986 98.77%

Table 6.6: AUC for Different Subsets of Variables.

The final question that needs to be answered is which variables
are more important, and try to measure their effect in the model
overall. There are three main sets of variables in the problem: The
RFM and demographic variables, the variables that are suggested in
the literature that extend the RFM methodology, and the network
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Figure 6.9: ROC Curve for Different Subsets of Variables.

variables. In order to contrast these sets three additional Random
Forests are estimated – since they give the best results –, one for
each subset of variables. The results of these models can be seen in
Table 6.6.

It can be seen that only using the 9 network variables available
the model reaches an AUC of 0.920. A model with only the RFM
and demographic variables reaches an AUC 0.953, slightly higher.
The inclusion of currency and country variables, together with the
transaction averages (from the literature) make the AUC increase only
slightly to 0.955. From these results we can conclude that the RFM
variables are a very good set of variables to predict fraud, permitting
to reach a very high AUC measure. The inclusion of the extended
literature variables increase only slightly the AUC from a pure RFM
approach, which might be caused due to regional behavior described
in the data set we have available: variables representing currency and
country do not present a strictly different behavior in Europe – with
a unified currency, small travel distances and an integrated market,
which might be even stronger when considering online sales – than
what it might occur on different regions, such as North America or
Australia. We can conclude that the inclusion of transaction averages,
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currency, and country variables has a minor, albeit positive, impact
on the description of fraud for our data set.

The inclusion of social network variables in combination with all
the RFM variables has a very strong impact on the prediction results,
reaching an AUC of 0.987. The main conclusion that can be derived
from this result is that, considering that the social network variables
have a very small correlation with respect to the other sets (the largest
is 0.1), the information that these variables bring allows increasing the
capabilities of the data set, interacting multidimensionally with the
other two sets of variables, which translates into an increase of 5% in
the AUC of the model. The ROC curves of the three different models
(Figure 6.9) show that the models perform similarly in terms of the
separation of false positives and false negatives, but the full model
has less false positives in the early stages of the model, and that gain
comes from the combination of the data sets.

When dealing with fraud, it is common to see several transactions
that occur in a very short period of time, with a very high accumu-
lated monetary value. As such, detecting the first transaction that is
fraudulent is an interesting problem. Table 6.6 displays the AUC of
first transactions only (the ones with GlobalFrequencyHour equal to
zero). It can be seen that the AUC, although lower, is still very high,
which suggests that the purchasing patterns that precede fraud in the
long term are the most relevant for predicting it, or, conversely, that it
is the contrast between current and past behaviors that allow to cor-
rectly estimate fraud, and this is correctly captured by the variables
in the model.

The exact relevance of the variable can also be extracted from the
Random Forests model, and sheds light on the multidimensional in-
crease in predictive capabilities of the model. Figure 6.10 shows the
relative importance of each variable according to the Random Forests.
It is interesting to note that the top two (with very similar importance)
are one for each set, and are both related to the merchant at which
the purchase occurs: AvgAmountMerchantWeek corresponds to the
average monetary value per week before the current transaction at the
merchant, so it shows the normal behavior on any given week, whereas
LT TXScore shows the long-term behavior of the network associated
with the transaction itself, representing the normal, long-term, rela-
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tion between merchants and the user of the credit card, weighting in
the expected patterns of both fraud and non-fraud given the structure
of the network. The next set of variables are again some literature
and RFM variables mixed with network variables, but now referring
to the medium-term (day) purchases, followed by the short-term net-
work scores for both the merchant and the transaction. The variables
representing transactions during the last hour seem to be of lower
importance, and the currency variables close the list, which suggest,
as shown before, that the purchase pattern in Europe is marked by
the euro, so effects on currency that were present in previous works
in the literature are annulled. It follows that it is from these relation-
ships between the social network variables and the purchase patterns
that the learning process is able to extract a significant amount of
information that allows for a very high accuracy and AUC. As was
expected, the first purchase variables are of limited importance in the
Random Forests, but they can be significant in the logistic regression,
considering the fact that the information of those variables was in-
cluded in a mixture of information from other variables which cannot
be recovered easily in generalized linear models.

Regarding the signs and significance, most short-term variables are
non-significant in the logistic model, which suggests that the hourly
behavior requires a deeper multivariate analysis that Random Forests
delivers. All currency-related, and many country-related variables are
highly correlated with other variables in the data set which suggest
that the purchasing patterns of the data set are highly localized. The
signs of the significant variables show that the hourly behavior tends
to have a positive sign, which increases the odds of fraud, showing that
when there are short-term increases in purchasing there is a higher
risk of fraud. Something similar happens with the global variables: a
higher global frequency is related to a higher fraud probability, but
a higher monetary value is related to lower odds of fraud. All long-
term social network variables are relevant, with varying signs: the
long-term merchant score has a negative sign, showing that there are
less risky merchants when dealing with fraud, but the transaction
and customer long-term score have positive signs, which suggests that
there are riskier customers, more prone to be subject to fraudulent
activities.
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6.5 Conclusions

In summary, this chapter tackles credit card transaction fraud by
proposing a novel, automated and real-time approach Apate (short
for: Anomaly Prevention using Advanced Transaction Exploration).
For each new incoming transaction, Apate decides whether the trans-
action might hint towards fraud and whether or not it should be pur-
sued. A major component of Apate is the feature extraction part,
where both intrinsic and network-based attributes are combined. Our
approach uses the RFM framework (Recency - Frequency - Monetary
Value) complemented with demographic information of the transac-
tion to define intrinsic features. As opposed to many previous studies,
the detection models are enriched with network variables. The credit
card fraud network consists of a network where credit card holders are
connected to the merchants through the transactions they make. In
particular, this chapter discusses a new technique for fraud propaga-
tion through the network starting from a limited set of labeled edges
(i.e., fraudulent transactions) and inferring a score for all the network
components (i.e., credit card holders, merchants and transactions).

Apate is tested on a company data set with more than three
million transactions, by estimating a logistic regression, a neural net-
work and a Random Forests model. Results show that the proposed
approach leads to a very high AUC score and accuracy, especially
for Random Forests. Even after adjusting the model to only allow
1% false positives, a high specificity is achieved, meaning that our
models efficiently identify fraudulent transactions. Although each set
of features separately results in a good model performance, the best
results are reached when both intrinsic and network variables are com-
bined, which suggest that there is a multidimensional component that
is inherent of the combinations of the RFM and network approaches,
potentially capturing both a short-term change in behavior – contrast-
ing the short-term purchase pattern with the normal ones, either daily
or weekly one – and a long-term structure of the transactions, which
arises from analyzing the different networks that can be inferred from
the data. Finally, this chapter shows that Apate is not only able to
find almost all fraudulent transactions, but also accurately pick out
the first transaction in a series of fraudulent transactions, which is an
important requirement in curtailing credit card transaction fraud.



Chapter 7

Conclusions

“One never notices what has been done;
one can only see what remains to be done.”

— Marie Curie, 1894

In this dissertation a set of new approaches are developed on how
to use network analysis in a fraud detection context. All approaches
are tested on real-life data sets obtained from (a) the Belgian Social
Security Institution which aims to detect and prevent corporate tax
evasion, and (b) Worldline Belgium, a credit card issuer that tries to
minimize the losses due to unlawful use of credit cards by fraudsters.
All approaches are developed from the point of view of the applica-
tion, whilst simultaneously being as generic as possible. Hence, this
dissertation serves as an intertwinement of theory and practice. This
last chapter consists of two parts. In the first part, the main findings
and conclusions of this dissertation are recapitulated. The second part
elaborates further on future research ideas.

7.1 Conclusions

This dissertation is situated in the research domain of data science.
The introductory chapter elaborates further on data science, its
requirements and its applications. Data science encompasses every
theory, strategy and action undertaken that use data, ranging
from data definition, storage and collection to the interpretation,

167
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implementation and evaluation of knowledge derived from data.
The main objective is to develop automated detection algorithms
that are capable of processing massive amounts of data in a limited
time span which generate a highly accurate, meaningful and precise
output. These algorithms help fraud fighters in the investigation
process. This chapter also zooms in on the motives of people why
they commit fraud. The fraud triangle helps to identify three drivers:
pressure, opportunity and rationalization. While the first driver
focuses on the incentives (e.g., money, prestige, greed, etc.) of fraud,
the opportunity refers to the possibilities created by the system (e.g.,
a company, society, environment...) or by the fraudsters themselves.
Rationalization specifies the fact that fraudsters resign themselves
to their crimes. Many types of fraud exist. This chapter provides
a non-exhaustive list of different fraud categories. Especially, credit
card fraud and tax evasion are highlighted. All approaches in this
dissertation are applied on credit card fraud and tax evasion.

The second chapter serves as a formal basis for network notation
and representation which are used in the next chapters. The potential
strength of state-of-the-art network analysis is discussed, together
with a brief introduction to applications of network analysis in a
fraud detection setting. Furthermore, this chapter elaborates on
how a network can be represented in a mathematically interesting
manner in order to derive useful statistics and meaningful features
from the network in a scalable way. In terms of scalability, egonets
are presented. An egonet is the one-hop induced neighborhood
centered around a node of interest. We argue that analyzing each
node’s egonet, can result in a powerful set of features. In addition,
we contrast the various options to decide upon the weight of edges
which are able to quantify the intensity of relationships. Homophily
is explained, a concept borrowed from sociology, which states that
people have the tendency to connect to other people that are similar
to themselves (e.g., interests, hobbies, propensity to commit fraud,
etc.). In a network that exhibits statistically significant signs of
homophily, nearby social neighbors are alike. In this chapter,
homophily is mainly approached from a fraud perspective, so to
serve as a primary indicator whether a fraud detection model might
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benefit from network analysis. The second chapter is concluded by
entering into the featurization process. The featurization process
defines how unstructured network information can be mapped into a
set of structured features. Neighborhood metrics, centrality metrics
and collective inference algorithms are presented.

In Chapter 3, a new fraud detection approach Gotcha! is
introduced. The approach is tested on data from the Belgian
Social Security Institution which is responsible for the collection
and distribution of social contributions. Fraud is defined as those
companies that intentionally go bankrupt in order to not pay their
taxes. The aim hereby is to improve the performance of traditional
classification techniques for social security fraud by including infor-
mation from a time-weighted, bipartite network. Fraud is dynamic
and evolves over time. The network exhibits time in the edge weight.
The bipartite structure is imposed by domain requirements. This
means that network includes two node types (here: companies and
resources). Starting from a limited set of fraudulent companies,
fraudulent influences of one node type are spread through the
network in a viral like manner, so to infer an initial exposure score
for both node types, i.e., the unlabeled companies and resources.
The propagation algorithm inherits concepts from the Personalized
PageRank approach as proposed by Page et al. (1998), and is
extended by making the following domain-dependent adjustments:
(1) propagation for bipartite graphs (i.e., scoring both companies
and resources), (2) emphasizing fraud, (3) dynamical procedure:
use of time-dependent weight to represent relationships between
companies and resources, ánd to weight the impact of fraud, (4)
degree-independent propagation. The time-dependent weight allows
both to anticipate and forgive the riskiness of the resources. For each
company, we aggregate the properties of the direct neighborhood,
and combine them with intrinsic features.

The Social Security Institution and other similar fraud applica-
tions benefit from the developed approach in multiple ways: (1)
Guided search for fraud. Instead of randomly investigating companies,
Gotcha! produces an accurate list of companies that are worthwhile



170 7.1. CONCLUSIONS

to investigate by experts. Experiments show that Gotcha! exploits
essential information from the network predicting future fraud more
efficiently. Gotcha! is compared to three other baselines. The first
one is an intrinsic-only baseline and uses only intrinsic features. The
second one is a unipartite baseline, linking the companies directly to
each other and aggregating resource information in the link weight.
Hence, the network is not time-weighted and only contains one node
type. The third one extends the network representation to bipartite
graphs, as often imposed in a fraud setting, but does not include time
in the link weights. Results show that Gotcha! significantly pro-
duces more accurate results than the baselines in terms of AUC score.
We find that network models achieve a higher precision, although re-
call is approximately the same. Hence, network-driven models reduce
the set of high-risk companies passed on to the experts for further
screening. (2) Faster fraud detection. The predictability of short-
term models is surprising. Short-term models are not only capable
to accurately predict which companies will commit fraud in the near
future, but also identify companies that perpetrate fraud many years
later. This results in a higher overall precision compared to medium-
and long-term models, favoring the short-term models in the fraud
detection process.

A similar network model is used in practice by the Belgian Social
Security Institution to guide fraud experts and inspections.

While the focus of Chapter 3 was to identify individual fraudsters,
the objective of Chapter 4 is to find undetected groups in the
network. Rather than relying on confirmed fraud, Gotcha’ll! aims
to learn from the structure of cliques, and the local properties of
the clique members. Again, starting from a bipartite network, the
graph is split up in cliques. A clique is a fully connected subgraph
where each node is connected to every other node. However, the
bipartite structure where companies are uniquely connected to their
resources does not allow to find such cliques. Hence, the definition
of a clique is relaxed, such that we aim to find subgraphs where
each company node is connected to each resource node, and vice
versa. Every clique is assigned a score in terms of the sensitivity
of that clique to fraud and bankruptcy based on the computed
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exposure scores. Clique-based features are enriched with intrinsic
and relational features for each clique member. Results indicate that
the combination of clique-based, relational and intrinsic features
achieves the best performance. It is shown that bankruptcy is an
important indicator and often comes along with fraud. Compared to
Gotcha!, we find that the same intrinsic features are highlighted as
important predictors. In particular, Gotcha’ll! is able to uncover
22% fraud cases, which is very high considering the extremely skewed
class distribution (< 0.2%). Remark that these results differ from the
results achieved in Gotcha! for the following reasons: (1) no direct
features are computed for Gotcha’ll!, (2) Gotcha! does not include
bankruptcy-based features, (3) Gotcha! comprises a more thorough
post-analysis taking into account suspicious bankruptcies and frauds
that occur even after the adopted analysis period, and (4) the results
in Gotcha! are evaluated based on an out-of-time validation, whilst
the results of Gotcha’ll! are evaluated on the same time stamp.

The usefulness of this algorithm is its capability to uncover
undetected groups in the network, and finally curtail growth of
such fraudulent subgraphs. Furthermore, the fundamentals of this
approach are used for CAW (Check-in @ Work) registrations of
the Belgian Social Security Institution, a new check-in system for
employees at construction sites, operational from April 2015.

Chapter 5 elaborates on how to improve classification output
given the limited budget b of inspectors. The budget b corresponds
to the number of companies that can be inspected by fraud experts,
and is often extremely low. The research objective is formulated as
follows: If we invest an amount k of total budget b to ask inspectors
about the true label of a set of companies selected based on some
selection criterion, and we use these labels to re-learn a new model,
will we achieve more precise results using the new model than by
using the complete budget b to inspect the initial results without
re-learning? Network models often rely on collective inference
algorithms, where the label of one node is said to depend on the
label of the other node. A change in the label of one node might
have an impact on the label of its neighbors, which might have an
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impact on their neighbors in turn, and so on. Active inference is
a subdomain of active learning where a network-based algorithm
iteratively learns the label of a set of unknown nodes in the network
in order to improve the classification performance. Although the
domain requirements are rather strict, Random Forests benefit the
most from active inference, achieving an increase in precision up
to 15%. We investigated different probing (or selection) strategies
to select the most informative nodes in the network and evaluate
(1) expert-based and (2) committee-based strategies which are
often preferred in order to obtain an unbiased set of companies for
investigation. Results show that probing strategies on their own are
able to identify those companies with the most uncertainty, resulting
in a total precision of up to 45%.

In Chapter 6, an approach is developed to tackle credit card
fraud. Although initially the domain requirements of credit card
fraud seem similar to the domain requirements imposed by social se-
curity fraud (i.e., both start from a bipartite graph of credit card
holders/merchants or companies/resources respectively), there is one
main difference. In social security fraud, companies were attributed
to fraud. These are the nodes in the corresponding network. In credit
card fraud, the transactions or edges between merchants and credit
card holders are labeled. In this chapter, we start from a limited
set of labeled edge (i.e., fraudulent transactions) to infer an exposure
score for all the network components (i.e., the credit card holders,
merchants and new incoming transactions). The approach is tested
on a data set from a credit card issuer with more than three million
transactions. The best results are reached when both intrinsic and
network variables are combined, which suggest that there is a mul-
tidimensional component that is inherent to the combinations of the
RFM and network approaches, potentially capturing both short-term
changes in behavior – contrasting the short-term purchase patterns
with normal ones, either daily or weekly – and a long-term structure
of the transactions, which arises from analyzing the different networks
that can be inferred from the data. Results show a very high AUC
score and accuracy, especially for Random Forests. Even after ad-
justing the model to only allow 1% false positives, a high specificity is
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achieved, meaning that the proposed model efficiently identifies fraud-
ulent transactions. Finally, this chapter showed that we are not only
able to find almost all fraudulent transactions, but also accurately pick
out the first transaction in a series of fraudulent transactions, which is
an important requirement in curtailing credit card transaction fraud.

7.2 Future research

7.2.1 Network dynamics

According to Definition 3.1, one of the challenges that concur with
fraud is the time-evolving property. The aforementioned approaches
implemented this property in the link weight between nodes of the
network whereby a higher weight is assigned to more recent relation-
ships. Moreover, the amount of fraud propagated through the network
by a fraudulent node depends on its recency. Again, the more recently
the node was captured as a fraud, the more influence it has on the
neighboring nodes. Results show that time is an important element to
boost the detection models. Future research should elaborate further
upon the time property and should answer questions like: how much
history should be taken into account? What is the optimal time hori-
zon to predict future fraud? How should past relationships and past
fraud be weighted in time, and what is the best weighing method?
The Gotcha! model as described in Chapter 3 incorporates all his-
tory to decide upon future fraud. Is it recommended to use all this
history, or would it be better to only consider a limited timespan?
And if so, how much history should be used? A thorough domain-
wide study should address these questions, and should evaluate the
optimal decision strategy in terms of (1) performance, and (2) scala-
bility. Applications that have to deal with streaming data (like credit
card transactions), collect and process huge amounts of data. Due to
scalability issues, it is far from straightforward to include all history
as this might result in networks of huge sizes.

Given the incorporation of historic information - regardless of the
timespan, how should historical relationships be weighted in time? In
this dissertation, the strength of relationships between the network
nodes – by means of the link weight – is exponentially decayed upon
its recency. The decay constant is γ (for decaying edge weight) and
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β (for decaying past fraud). Due to a non-disclosure agreement, we
cannot further elaborate on the exact value of γ and β, but we can say
that it is a fixed, arbitrarily chosen value, based on experts’ intuition.
What is the effect if we change this value. More generally speaking,
how should the optimal value be chosen? Do other decay strategies,
like a linear or stepwise decay, perform similarly?

All models developed for the Social Security Institution (Chap-
ter 3 - 5) are evaluated on their performance for three time windows:
short, medium and long term. So far, the time window is arbitrarily
chosen, and set on 6 months (short term), 12 months (medium term)
and 24 months (long term). It is shown that, although long-term
models seem to perform best, short-term models are not only capable
of identifying companies sensitive to commit fraud in the near future,
but also anticipate companies that are likely to commit fraud on long
term. As such, short-term models are preferred. A more profound
study should indicate what the optimal time horizon is to evaluate
the models, and which strategy should be used to decide on the right
time window.

Extracting a set of features that captures a company’s behavior
over time, might result in a better performance and gain important
insights. Survival analysis for fraud detection can help in the study
of a company’s behavior over time. In terms of network analysis, this
may refer to the probability that (1) a label (e.g., non-fraud or fraud)
of a node in the network does not change after a certain timestamp
t, or (2) a new link between two nodes in the network exists at time
t, or (3) even a new node pops up in the network after time t.

How do fraudulent subgraphs or cliques evolve over time? The
analyses discussed in this dissertation extracted cliques at a predeter-
mined timestamp, neglecting how such cliques have been developed
in the past and how their structure continues to expand in the future.
Time-dependent co-clustering (i.e., a technique to split the network
in subgraphs) should be further explored. One possibility is to add
history nodes to the network, representing (a) past version(s) of
each current node in the network and its connections with other
history nodes. Each history node is connected with its corresponding
successor node. Based on such network representation, cliques
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generated by co-clustering or similar approaches might contain both
history as current nodes indicating (1) which nodes are currently
part of the clique and since when (both the the current node and its
history nodes are part of the clique); and (2) which nodes were part of
the clique since/until when (only history nodes are part of the clique).

Another issue that applies on many fraud detection problems, is
the existence of repeated frauds over time. This refers to the fact
that the label of an instance (let’s say, a person) changes over time.
A person might commit fraud on time tx and tx+s, but acts legally
in between. This is indisputably connected to the anticipating and
forgiving effect of the Gotcha! propagation algorithm that antici-
pates fraudulent behavior of resources, and forgives their association
with fraudulent companies over time. Although the main objective
of Gotcha! is to catch companies – whose label cannot change over
time: a company is active and legitimate, or a company is fraudulent
and bankrupt – a more thorough analysis should be perpetrated to
investigate the effect of fraud from the point of view of the resource.
The following questions should be answered: When is a resource en-
ticed to commit fraud again? What are the underlying motives that
trigger fraudulent behavior? Can we predict which resources are co-
incidentally related to fraudulent companies, and which resources are
rather responsible to infect other companies with fraud?

7.2.2 Multi-view learning

In many applications, each data sample can be described by data
collected from different domains or obtained from various feature
extractors which exhibit heterogeneous properties (Xu et al., 2013).
A view is exactly the set of features extracted from one specific
domain. In the light of this dissertation, both the intrinsic feature
set and the relational feature set can be seen as a separate view of
the same problem. This work mainly focuses on the concatenation of
the two views into one single view. That is, the combination of both
intrinsic and relational features which are then used as one single
feature set for learning. It is shown, however, that models learned
from one single view are more sensitive to over-fitting (Xu et al., 2013).



176 7.2. FUTURE RESEARCH

Other approaches exist to deal with multiple views. Future re-
search should further elaborate on how co-training – a multi-view
learning approach – is able to improve the classification performance
of the current models. In co-training, a model for each view is learned
and each model is alternately updated by using the results of the
model in the other view. In such a way, the knowledge obtained
from one view has impact on the model in the other view, and vice
versa. This process is repeated until the mutual agreement between
the classifiers on unlabeled data is maximal. Another, more simplis-
tic approach is to apply ensemble learning, where we learn a model
or base classifier for each view and then use the output of each base
classifier to learn a so-called meta-classifier. The meta-classifier deter-
mines the label of each sample as a combination of the base classifiers.
Rather than using a meta-classifier to combine the results of the base
classifiers, rank aggregation heuristics such as local Kemenization or
α-approximation are able to derive a global ranking based on the lo-
cal rankings of each base classifier. For a more detailed overview of
multi-view learning, we refer to Xu et al. (2013).

7.2.3 Rationales

This dissertation is an intertwinement between theory and practice.
The development of all approaches in this dissertation starts from a
thorough understanding of the problem by closely interacting with
domain experts. Definition 3.1 underlines the importance of domain
knowledge in fraud detection. Inspectors often have a good intuition
where to look and how fraud is perpetrated. While this work only
uses domain knowledge in the development of the models, recent work
(Sharma et al., 2015) proposed to integrate experts’ rationales – i.e.,
the reason why they label a certain instance as fraud or legitimate –
into the models and update the model accordingly.

More specifically, in Chapter 5, we introduced active inference – a
subdomain of active learning – where we ask inspectors about the true
label of a set of companies such that the expected label of all other
companies is optimized. However, we only require from the experts
to label instances without specifying why they assigned a specific la-
bel to these instances. Nevertheless, the rationale behind an expert’s
decision is valuable and can positively impact the prediction perfor-
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mance of other, similar instances. Sharma et al. (2015) proposed a
classifier-agnostic approach to integrate rationales in document clas-
sification. That is, the authors asked the labeler to (1) label a set of
documents, and (2) highlight the words or phrases that affected their
decision.

In this context, we have to ask inspectors (1) about the true label
of a company, and (2) the rationale behind their decision (e.g., which
features determine the label). Future research should investigate the
following questions: Do rationales positively impact the performance
of the fraud detection models? How should rationales be integrated in
the feature set (over time)? Are rationales useful for every instance?

7.2.4 Internet of Things (IoT)

With the rise of Internet of Things (IoT), many opportunities open
up for network analysis in fraud detection. IoT is the existence of one
big, interconnected world of electronic devices, sensors, software, IT
infrastructure, etc. (Baesens et al., 2015). The majority of devices
is no longer operated by humans, but they rather function automat-
ically. As a result, much more data can be collected and analyzed.
In a fraud detection context, this means that both the fraudsters and
the fraud fighters benefit from this new technology. From the fraud-
sters’ point of view, since IoT exceeds ever known sizes, it is easy to
find and take advantage of loopholes in the interconnected network.
On the other hand, it creates emerging opportunities for fraud fight-
ers as they are able to investigate fraud from multiple point of views
(e.g., the combination of smart meters, weather forecasts, traffic maps,
etc.). However, it is far from straightforward how to deal with this
big network of interrelated things. This dissertation focused on how
to extract data from unipartite (as a baseline in Chapter 3), bipartite
(social security fraud) and tripartite (credit card fraud) graphs, where
a graph contains one, two or three node types respectively. Inter-
net of Things extends current approaches to multipartite or n-partite
graphs. Such networks can quickly grow to immense sizes. How do we
connect n node types with each other, in a scalable manner and such
that we are not penalized in interpretability? Advances in analytics
of IoT strongly depend on advances in other research domains (e.g.,
face/speech recognition, smart grids, text/opinion mining, etc.). As
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we are still at the beginning of the expansion of IoT, for now, it should
be seen and researched as a “plug-and-playground” where extra input
can be systematically added in a flexible way. From this perspec-
tive, state-of-the-art advances in data science – and in particular in
network analytics – with regard to IoT, can gradually grow together.
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