

21 January 2015

The State of Database Access in Java:

Passchendaele Revisited

by Bart Baesens, Aimée Backiel, and Seppe vanden Broucke

This year marks the centennial of the start of the First World War. One of the

fiercest battles in WWI was the Battle of Passchendaele in Belgium. This

manslaughter took place from July-November 1917, with more than 500,000

men lost on both sides for only a few kilometers gained, which were retaken

soon afterwards during the German Spring offensive. It was characterized by

ferocious fighting in terrible conditions -- think mud, unceasing rain, and cold

weather, but with what were "state-of-the-art" technologies at the time (e.g.,

tanks, gas, flamethrowers) -- and with the loss of precious resources. The

battle symbolizes the horror of the Great War in every respect.

What does this history lesson have to do with the state of database access in

Java? The answer is, of course, not a lot. But in this Advisor, we want to take

you on a history tour through the different technologies that were once

considered state of the art concerning database access in Java before they

faded out and were replaced with the next fad. At the end of the day, the

astute observer cannot help but wonder if we haven't ended up in a situation

that is similar to the Battle of Passchendaele: state-of-the-art equipment and

technology, but still struggling through the mud. Let us see how this state of

affairs came to be, beginning 15 years or so ago.

In 1998, I culminated my studies with a master's thesis entitled, "Object

Relational Database Access," in which I explored various ways of reconciling

OO programming languages with relational databases. My key findings were

that SQL is a very important database manipulation language, OO databases

are too complex, and Object Relational Mappers (ORMs) were the best option

at the time (this was three years before the advent of Hibernate). When we

started writing a book about a year ago entitled Beginning Java Programming:

The Object-Oriented Approach , a primary focus was accessing databases in

Java. After reviewing today's state-of-the-art technologies, we came to the

conclusions we describe here.

Custom SQL

The most popular approaches currently adopted in the industry are Java

DataBase Connectivity (JDBC) and Hibernate. JDBC is a popular standardized

API that gives database-independent access to tabular data typically stored in

relational databases or even Microsoft Excel. The technique is characterized by

the fact that many bindings are available for it (making it easy to access a

wide range of databases) and you can talk at a fairly low level with the

Welcome to the Cutter IT

Advisor, the weekly e-mail

service for subscribers of

Cutter IT Journal .

Cutter IT Journal print

subscribers : ePub and PDF

delivery of all issues will now

be included as part of your

subscription! Online

subscribers can also access

these versions when logging

into issue.

Recently published:

 The State of Database

Access in Java:

Passchendaele Revisited

by Bart Baesens, Aimée

Backiel, and Seppe

vanden Broucke

 In the Era of BYOD, How

Does Enterprise IT Deal

with Mobile Security? by

Markus Rex

 Mobile Security: Managing

the Madness by Sebastian

Hassinger

 Top Intriguing Cutter IT

Journal Articles for 2014

by Karen Coburn

 Types of Software

Development by Dr.

Murray Cantor

 More ...

Get the CITJ Feed

New Webinar

Leveraging Business

Intelligence for

Competitive Advantage

with Nancy Williams

Wednesday, January 28, 2015

12PM EST

This webinar will reveal how a

"value gap" results from loose

or non-existing alignment

between BI investments,

business strategies, goals,

and enabling processes.

Explore the successful

approaches BI leaders use to

leverage their data assets for

http://www.cutter.com/about-cutter/coaches-facilitators-contributors.html#baesensb
http://www.cutter.com/about-cutter/coaches-facilitators-contributors.html#backiela
http://www.cutter.com/about-cutter/coaches-facilitators-contributors.html#vandenbrouckes
http://www.amazon.com/Beginning-Java-Programming-Object-Oriented-Approach/dp/1118739493/cutterinformatco
http://www.amazon.com/Beginning-Java-Programming-Object-Oriented-Approach/dp/1118739493/cutterinformatco
http://www.cutter.com/itjournal.html?utm_source=newsletter_itj&utm_medium=email&utm_campaign=just_published
http://www.cutter.com/content/itjournal/fulltext/advisor/2015/itj150121.html
http://www.cutter.com/content/itjournal/fulltext/advisor/2015/itj150121.html
http://www.cutter.com/content/itjournal/fulltext/advisor/2015/itj150121.html
http://www.cutter.com/content/itjournal/fulltext/advisor/2015/itj150114.html
http://www.cutter.com/content/itjournal/fulltext/advisor/2015/itj150114.html
http://www.cutter.com/content/itjournal/fulltext/advisor/2015/itj150114.html
http://www.cutter.com/content/itjournal/fulltext/advisor/2015/itj150107.html
http://www.cutter.com/content/itjournal/fulltext/advisor/2015/itj150107.html
http://www.cutter.com/content/itjournal/fulltext/advisor/2014/itj141231.html
http://www.cutter.com/content/itjournal/fulltext/advisor/2014/itj141231.html
http://www.cutter.com/content/itjournal/fulltext/advisor/2014/itj141224.html
http://www.cutter.com/content/itjournal/fulltext/advisor/2014/itj141224.html
http://www.cutter.com/index/itjournal.html
http://feeds.feedburner.com/CutterITJournal
http://www.cutter.com/events/multimedia/leveragingbi.html
http://www.cutter.com/events/multimedia/leveragingbi.html
http://www.cutter.com/events/multimedia/leveragingbi.html
http://timeanddate.com/s/2rnu
http://feeds.feedburner.com/CutterITJournal

database, meaning that you send standard SQL and get back a result set that

you can deal with in your program as you desire. Hibernate is the most

popular example of an ORM, a type of middleware that assists in converting

data coming from relational databases (which typically are not very object-

aware) to objects that are directly usable in your OO programming

environment. This allows programmers to talk directly to objects (both for

retrieval and saving), but comes at a cost of flexibility, and -- in some cases or

when used incorrectly -- speed. Despite this, ORMs have become

commonplace in industry environments, with Hibernate still at the forefront.

Even although a standard API was added to Java to deal with ORM and data

persistence in general, called the Java Persistence API (JPA) which was heavily

inspired by Hibernate, most practitioners today still prefer to bypass this

standard altogether and go straight to Hibernate.

NoSQL Databases

In our book, we conclude that, for simple applications (working with only one

database and let's say less than 10 relational tables), it is advisable to use

JDBC, since it's quite easy to set up and work with compared to Hibernate,

which has a rather steep learning curve and bigger footprint. Hibernate is

typically recommended when working with complex database models

consisting of hundreds of relational tables with complex relationships. A key

benefit of Hibernate is that it allows you to completely abstract away the

complex underlying database design. Managing all these tables and

relationships in JDBC would be a very cumbersome exercise. Since many

professional software development methodologies are object oriented, another

key advantage of Hibernate is that it provides a straightforward mapping from

a conceptual OO model to a Java application, since you don't have to bother

with relational database design issues. Hibernate is also a very portable

solution, making it easy to switch to another ORM if desired. However, a key

concern of many Java developers working with ORM frameworks is that many

ORMs could benefit from further query optimization and tuning using, for

example, improved indices and caching. Because of this performance issue,

some developers use a mixed approach, whereby they use native SQL for read

operations (which typically make up the majority of an application anyway),

and Hibernate for the remaining create, update, and delete operations.

Object Relational Mappers

Apart from recent efforts in improving the aforementioned ORMs, a new type

of database has sprung up that rightfully asks: "If the goal is to map a

relational structure to objects, then why not move away from relational

databases completely?" This led to the development of "pure" OO databases,

which deal with objects and their state instead of tables and records, thus

doing away with the need for ORM (some of these are even implemented in

Java itself). Despite their intrinsic advantages, OO databases are seldom used

because they are often perceived (rightfully or not) as complex to work with.

performance improvement

and competitive advantage.

Register now.

When Business &

Technology Finally Marry

@ Cutter Summit 2015

presented by Steve Andriole

4-6 May 2015

In this Summit 2015 keynote,

Cutter Fellow Steve Andriole

will challenge your notion of

the business-technology

relationship and how your IT

organization needs to adapt to

truly power your business.

Register using Coupon Code

EARLY and SAVE $500! Sign

up now.

Follow Us on Twitter

Find us on Facebook

Join the Cutter Clients

LinkedIn group

ISSN: 1554-5946

https://events-na3.adobeconnect.com/content/connect/c1/752132433/en/events/event/shared/1397201232/event_registration.html?sco-id=1468823682%20
http://www.cutter.com/summit/2015/schedule.html#andrioles
http://www.cutter.com/summit/2015/schedule.html#andrioles
http://www.cutter.com/meet-our-experts/sabio.html
http://bookstore.cutter.com/product/summit-2015/
http://bookstore.cutter.com/product/summit-2015/
http://twitter.com/cuttertweets
http://www.facebook.com/pages/Cutter-Consortium/36601118302
http://www.linkedin.com/groups/Cutter-Consortium-Clients-4917768/about
http://www.linkedin.com/groups/Cutter-Consortium-Clients-4917768/about
http://twitter.com/cuttertweets
http://www.facebook.com/pages/Cutter-Consortium/36601118302
http://www.linkedin.com/groups/Cutter-Consortium-Clients-4917768/about

When looking at what's ahead, we see that databases are massively expanding

in size. IBM projects that we generate 2.5 quintillion bytes of data every day.

In relative terms, this means that 90% of the data in the world has been

created in the last two years. As such, new database technologies have to be

and have been introduced to efficiently cope with this tsunami of data. NoSQL

is one of these newer technologies. NoSQL databases abandon the well-known

and popular relational database scheme in favor of a more flexible, schema-

less database structure that more closely aligns with the needs of a big data

generating business process. One key advantage of NoSQL databases is that

they more easily scale horizontally in terms of storage. Four popular types of

NoSQL database technologies are: key-value-based, document-based, column-

based, and graph-based databases. Despite the name NoSQL, many of these

database systems still provide active support for SQL to manipulate the data

(this explains why the term is nowadays expanded to "Not Only SQL" instead

of the original "No SQL"). Moreover, in response to the NoSQL stream, some

vendors have come up with NewSQL database products by equipping

traditional RDBMs with facilities to provide the same scalability as their NoSQL

counterparts. A popular example here is Google's Spanner. Hence from a Java

programmer's perspective, it will remain important to know the basic concepts

of SQL in order to develop high-performing Java database applications.

In summary, we have observed that SQL still remains a very important

database manipulation language. While ORM goes a long way, we nevertheless

still see practitioners reaching for custom SQL every time a complex reporting

query with 10 joins needs to be written (and rightly so -- don't underestimate

the raw power of an optimized query). Second, pure OO databases are

deemed too complex, and currently risk having missed their time to shine

altogether in favor of newfangled NoSQL databases. Finally, the cool-headed

conclusion at the end of the day remains that ORMs are the best option

available. Notice any differences from 10 years ago? Neither did we. It seems

the Battle of Passchendaele provides a fitting metaphor here: a terrible

amount of resources have been wasted for a limited amount of "gain." On the

upside, however, technologies that have survived the hand of time (such as

Hibernate) have become increasingly better tested, documented, and are

overall more straightforward and easier to get started with and get working.

Java 8 is at the horizon, promising yet another wave of "revolutionary"

technologies such as Jinq (inspired by .NET's LINQ) and other stream-based,

declarative database APIs. We'll see what the future brings, but we'd advise

eager adopters to learn from history and -- perhaps a little bit -- from World

War I. At the very least, we can be thankful no one is using SQLJ any more.

For more information, please see our new book, Beginning Java Programming:

The Object-Oriented Approach . We welcome your comments about this

http://www.amazon.com/Beginning-Java-Programming-Object-Oriented-Approach/dp/1118739493/cutterinformatco
http://www.amazon.com/Beginning-Java-Programming-Object-Oriented-Approach/dp/1118739493/cutterinformatco

Advisor and encourage you to send your insights to us at

comments@cutter.com.

-- Bart Baesens, Aimée Backiel, and Seppe vanden Broucke

© 2015 Cutter Consortium. All rights reserved. Unauthorized reproduction in any form, including
photocopying, downloading electronic copies, posting on the Internet, image scanning, and faxing
is against the law.
To update your e-mail address with Cutter Consortium, reply to this message with your old and
new address. Or phone +1 781 648 8700.
If you do not wish to receive this email newsletter, unsubscribe here.
Did a colleague forward this Advisor to you? Sign up for your own free 4 week trial.
Cutter Consortium | 37 Broadway, Suite 1, Arlington, MA 02474, USA. | Tel: +1 781 648 8700 |
Fax: 781 648 8707 | www.cutter.com

mailto:comments@cutter.com?subject=The%20State%20of%20Database%20Access%20in%20Java:%20Passchendaele%20Revisited
http://www.cutter.com/about-cutter/coaches-facilitators-contributors.html#baesensb
http://www.cutter.com/about-cutter/coaches-facilitators-contributors.html#backiela
http://www.cutter.com/about-cutter/coaches-facilitators-contributors.html#vandenbrouckes
http://www.cutter.com/forms/unsubscribe.html
http://www.cutter.com/forms/getEmailTrial.html
http://www.cutter.com/

